Volume 15, number 4
 PDF Downloads: 981

Spectral Characterization and Antibacterial Activity of Synthesis Graphene Oxide Nanosheets

Adi M. Abdul Hussien, Russel R. Ghanimand M. R. Mohammad

Department of Applied Science, University of Technology, Baghdad-Iraq.

Correspondence Author E-mail: russull.rushdi@gmail.com

DOI : http://dx.doi.org/10.13005/bbra/2711

ABSTRACT: Graphene based materials have wide potential applications in biology, biomedical, agriculture environmental and biotechnology. Graphene Oxide (GO) is one of those substances and has a promising material as antimicrobial agents. In this work, the GO nanosheets have been synthesized by novel, easy, and efficient technique is simplified Hummer's method. The spectral properties of the synthesis GO nanosheets were characterized by using Raman, FTIR, and UV-Vis techniques. The Raman spectroscopy has been used to measure number of layers (sheets), grain size, and to identify the ordered and disordered structure of GO nanosheets. Fourier Transform-Infrared spectroscopy (FTIR) has confirmed the presence of the oxygen containing functional groups of the GO nanosheets. The Ultraviolet-Visible (UV-Vis) absorption spectrum shows two peaks, one in the UV region and the other band in visible region. The purpose of this work is to inspect the antibacterial activities of GO nanosheets, which has been synthesized by this novel way (simplified Hummer's method). It was tested against two microorganisms, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as model of Gram-negative bacteria and Gram-positive bacteria, respectively. Bacteriological studies were achieved by minimum inhibitory concentration (MIC), and cell viability analysis. The MIC showed the lowest concentration inhibits the bacterial growth of GO nanosheets, which is observed for E. coli was 125 μg/ml and 62.5 μg/ml for S. aureus. The cell viability analysis measured by florescent microscope has been confirmed the damage, which has been occurred on bacterial nucleic acid for the two types of bacteria.

KEYWORDS: Cell Viability Analysis; FTIR; Graphene Oxide; MIC; Raman; UV-Vis

Download this article as: 
Copy the following to cite this article:

Hussien A. M. A, Ghanim R. R, Mohammad M. R. Spectral Characterization and Antibacterial Activity of Synthesis Graphene Oxide Nanosheets. Biosci Biotech Res Asia 2018;15(4).

Copy the following to cite this URL:

Hussien A. M. A, Ghanim R. R, Mohammad M. R. Spectral Characterization and Antibacterial Activity of Synthesis Graphene Oxide Nanosheets. Biosci Biotech Res Asia 2018;15(4). Available from: https://www.biotech-asia.org/?p=32380

[ HTML Full Text]

Back to TOC