INTRODUCTION

(R)-phenylacetylcarnbinol [(R)-PAC or (R)-1-hydroxy-1-phenyl-propan-2-one] is a chiral intermediate in the production of the pharmaceutical compounds ephedrine and pseudoephedrine. Benzaldehyde and pyruvate were transformed at a scale of 1.2 ml into PAC by cell-free extracts of all selected strains, covering the broad taxonomic spectrum of Zygomycota and Basidiomycota. Highest final PAC concentrations were obtained with the extracts of Brettanomyces lambicus, [78-84 mM (11.7-12.6 g/l) PAC within 20 h from initial substrate concentrations of 100 mM benzaldehyde and 150 mM pyruvate]. (R)-PAC was in about 90-93% enantiomeric excess.

Brettanomyces lambicus were used as an example in a biotransformation process based on whole cells and benzaldehyde and glucose as substrates. The substrate pyruvate was generated through the fungal fermentation of glucose. Only 19 mM PAC (2.9 g/l) was produced within 8 h from 80 mM benzaldehyde, with evidence of significant benzyl alcohol production.

Key words: Brettanomyces lambicus, Biotransformation, PAC, Ethanol production.
activities (e.g. alcohol dehydrogenase). These enzyme activities do not interfere in cell-free extracts due to the lack of electron donors (e.g. NADH), thus allowing higher efficiency.

Preparation of inoculum

Cultures of *B. anomalus*, *B. bruxellensis*, *B. custersianus*, *B. lambicus*, *B. naardenensis*, *B. nanus* and *Hansunella polymorpha* were inoculated with pieces of culture grown at 30°C on YPS agar slants (Soluble starch 5g/1000ml, Yeast extracts 5g/l, K2hpo4 1.20g/l, Mgso4 0.5g/l, Agar 20g/l pH 3-3.5). The spores were washed from the culture with 15% (w/v) sterile glycerol. This suspension was adjusted to 108 spores/ml and was stored at 70°C.

The flasks were incubated in two phase. An initial rapid shaking (230 rpm) provided oxygen for fast biomass production. This was followed by a phase in which the oxygen supply was reduced (60 rpm, flasks covered with Parafilm) to induce the production of the enzyme pyruvate decarboxylase. *B. lambicus* and *B. naardenensis* were incubated at 23°C without shaking for the entire time to achieve better growth.

Samples of culture supernatant were stored at -20°C for the analysis of glucose and ethanol concentrations. The culture were harvested by filtration in a Buchner funnel, washed twice with cold buffer [50 mM 2-(N-morpholino] ethane sulfonic acid (MES)/KOH, pH 7.0, 20 mM MgSO4] and the excess liquid was drained off. The wet culture were weighed and frozen at -70°C. The frozen culture were ground to a powder in a chilled mortar (-70°C) with an equal weight of chilled glass beads as grinding agent. Cold breakage buffer (50 mM MES/KOH, pH 7.0, 20 mM
MgSO₄, 1 mM thiamine pyrophosphate, 1 tablet Complete Protease Inhibitor Cocktail EDTA-free/25 ml was added and the extracts were clarified by centrifugation (19,000 g) and adjusted to 5 ml. The resulting crude extracts were about four-fold concentration in relation to the culture volume. They were stored as aliquots at -70°C.

Growth and extraction of yeast

B. lambicus and *Hansunella polymorpha* were grown in the same medium as the yeast at 30°C and 230 rpm for 17.5 h. Washed cells were disrupted in breakage buffer by vortexing with glass beads at 4°C. After clarification by centrifugation (19,000 g), the crude extracts were adjusted to a protein concentration of 6 mg/ml.

Biotransformation of benzaldehyde by crude extracts

Biotransformations were carried out at a scale of 1.2 ml in 2-mlscrewed-glass vials with Teflon seals. Benzaldehyde (12.3 µl, final concentration 100 mM) was injected with a glass syringe under the surface of 180 µl of 1 M sodium pyruvate (final concentration 150 mM) in breakage buffer and 47 µl breakage buffer. After vortexing the emulsion, 960 µl crude extract were added and the sample was vortexed again for 10 s. The vials were rotated vertically at 35 rpm at room temperature (23°C). After 20 min and after 20 h, samples of 300 µl were taken and added to 30 µl 100% (w/v) trichloroacetic acid. After removal of protein by centrifugation, the supernatants were analyzed for PAC by HPLC.

Biotransformation of benzaldehyde by fermenting culture

Hansunella polymorpha was grown in YEMA medium (90 g glucose/l, 10 g yeast extract/l, 10 g (NH₄)₂SO₄/l, 3 gKH₂PO₄/l, 2 g Na₂HPO₄·12H₂O/l, 1 g MgSO₄·7H₂O/l, 0.05 gCaCl₂·2H₂O/l, pH 6) at 30°C for 20 h. The fermenting culture were harvested by filtration through a Buchner funnel (Whatman filter paper no. 1) and resuspended in YEMA medium to a concentration of approximately 7 g dry biomass/l. The flasks were then incubated on a shaker at 30°C and 150 rpm for 1 h. After wares, the cultures were sub-divided into 25-ml sample in 50-ml Erlenmeyer flasks, covered with Parafilm, and shaken at the same conditions. Flasks 1-3 were fed with 10 mM benzaldehyde every 2 h. Flasks 4-6 were fed with the addition of 15 mM acetaldehyde after 2 h, 4 h, and 6 h. After removal of culture by centrifugation, protein was precipitated by 10% (w/v) trichloroacetic acid. Diluted samples were

Fig. 2: Biomass and thanol production by filamentous fungi in shake flasks. The cultures were grown at 23°C or 30°C with initial rapid shaking followed by a phase in which oxygen supply was reduced. The initial pH was 6.0. The times of harvest are given in parentheses.
Fig. 3a-f Protein concentrations and activities in crude extracts of yeast. Strain Nos. 1. *B. anomalus*, 2. *B. Bruxellensis*, 3. *B. custersianus*, 4. *Hansunella polymorpha*, 5. *B. naardenensis*, 6. *B. lambicus* and 7. *B. nanus*. a Protein concentrations in crude extracts; b pyruvate decarboxylase activities in crude extracts, measured spectrophotometrically by the alcohol-dehydrogenase-coupled assay at pH 6 and 25°C (no data available for strain 5); c initial productivity for PAC by crude extracts (80% v/v). Substrate concentrations were 100 mM benzaldehyde and 150 mM pyruvate at pH 7 and 23°C in 50 mM MES/KOH, 20 mM MgSO₄, 1 mM thiamine pyrophosphate, 1 tablet EDTA-free Complete Protease Inhibitor/25 ml. d Final PAC concentrations after 20 h of incubation and theoretical yields based on initial benzaldehyde concentrations; conditions were as in c. e Initial productivity, as in c, related to the protein concentration. f Final PAC concentration, as in d, related to the protein concentration.
analyzed by HPLC for PAC, benzaldehyde, and benzylalcohol.

Analytical methods

The level of glucose was measured by and enzyme-electrode-based glucose analyser. Ethanol concentrations were estimated by gas chromatography using a 1 mx6.3 mm Porapak Q column and a flame ionisation detector (column 180°C, injector and detector 200°C, carrier gas N2 30 ml/min).

PAC, benzaldehyde and benzylalcohol were quantified by HPLC with UV-detection at 283 nm (PAC and benzaldehyde) and 263 nm (benzylalcohol). Concentrations were determined based on peak areas with reference to standards. An C8 column (5 µm, 250 x 4.6 mm) with 32% (v/v) acetonitrile and 0.5% (v/v) acetic acid in water as the mobile phase (1 ml/min). The (R)- and (S)-enantiomers of PAC were separated by chiral HPLC with a Chiracel OD column (10 µm, 50 x 4.6 mm) from Sigma-Aldrich in 95% (v/v) n-hexane, 4.9% (v/v) isopropanol, and 0.1% (v/v) formic acid (0.8 ml/min). The enantiomeric excess was calculated based on peak areas.

Pyruvate decarboxylase activity was measured spectrophotometrically by the alcohol dehydrogenase-coupled assay as specified by Sigma-Aldrich. Protein concentrations were estimated according to the method of Bradford (1976) with the Coomassie Plus protein assay reagent (Pierce).

RESULTS

Growth of fungi and ethanol production

The growth times needed for the production of a reasonable amount of biomass are given in Fig. 2. The fasted biomass production times were observed for (strains 1-7). All strains produced ethanol. Final ethanol concentrations were up to 36 g/l with yields (ethanol/glucose utilized) of up to 0.43 g/g.

Pyruvate decarboxylase activities in cultural extracts

Extracting the yeast culture by grinding and suspending in buffer mainly yielded protein concentrations between 2.5 and 7 mg/ml (Fig. 3a). The pyruvate decarboxylase activities as estimates since the extracts might also have contained other oxidoreductase activities, for example lactate dehydrogenase, which could have interfered with the spectrophotometric assay.

Biotransformation of benzaldehyde by crude extracts

PAC was produced from benzaldehyde and pyruvate by all extracts of the 7 strains of yeast. The best initial productivities of 3.8 – 6.5 g PAC/l in 20 min were obtained with crude extracts from all strains (Fig. 3c). This carboligation followed a similar trend as observe in the decarboxylase activities shown in Fig. 3b. strains produced the highest final PAC concentrations, 78-84 mM (11.7 – 12.6 g/l, Figure 3d) after 20 h of incubation. This was 78-84% of the theoretical yield based on the initial benzaldehyde concentration.

Figure 3e, f relates initial productivities (Fig. 3c) and final PAC concentrations (Fig. 3d) to the protein concentration in the biotransformation mixtures. These relative values were highest for B. lambicus. All results were obtained without any optimization of the experimental conditions. The biomass extracts did not produce the byproduct benzylalcohol. PAC was not formed in the absence of biomass extracts. The enantiomeric excess of (R)-PAC from the final biotransformation samples (Table 1) was between 90 and 98% respectively.

Biotransformation of benzaldehyde by culture of Brettanomyces lambicus

As an example of PAC formation with fermenting culture, shows the benzaldehyde biotransformation by cultures of Brettanomyces lambicus With a 10 mM stepwise feed of 40 mM benzaldehyde, 10 mM PAC (1.5 g/l) was produced in 8 h. The benzaldehyde concentration decreased to zero before each new feed and the PAC increase at sampling times was linear over time. The by-product benzylalcohol was produced at approximately double the rate of PAC production, reaching a final concentration of 25 mM.

Eighty mM benzaldehyde (in 20 mM portions) with addition of 45 mM acetaldehyde (in 15 mM portions) yielded 19 mM PAC (2.9 g/l) in
mM portions) yielded 19 mM PAC (2.9 g/l) in 8 h. The PAC increase at sampling time was linear at the beginning and slowed down after 4 h. This was accompanied by the build-up of benzaldehyde concentrations in the medium and morphological changes in the culture. In the first 2 h, the formation of the by-product benzylalcohol was as fast PAC production. It slowed down after the first addition of acetaldehyde, which competes with benzaldehyde for the dehydrogenase enzymes, and reached a final concentration of 15 mM. Thus the ratio of PAC to benzylalcohol (19 mM / 15 mM) was three times higher that in the first experiment (10 mM / 5 mM). The yield of PAC with respect to total added benzaldehyde in both experiments as 5% of the theoretical yield.

DISCUSSION

Several yeast species and their pyruvate decarboxylases as well as pyruvate decarboxylases from the bacterium *Zymomonas mobilis* have been well investigated with regard to their (R)-PAC-producing potential (Bringer-Meyer and Sahm 1988; Pohl 1997; Rogers et al., 1997; Oliver et al., 1999). This study examines for the first time the potential of using filamentous fungi for (R)-PAC production.

The screening medium and conditions allowed growth as well as ethanol production for all 14 strains of filamentous fungi. Eleven stains yielded 0.34 – 0.43 g ethanol/g consumed glucose (68-86% theoretical yield), indicating a strongly fermentative metabolisms and thus high activity of the fermentative enzyme pyruvate decarboxylase.

<table>
<thead>
<tr>
<th>No.</th>
<th>Strain</th>
<th>Enantiomeric excess of (R)-PAC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B. anomalus</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>B. bruxellensis</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>B. custersianus</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>Hansenulla polymorpha</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>B. nanus</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td>B. naardenensis</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>B. lambicus</td>
<td>93</td>
</tr>
</tbody>
</table>

After 2 days *Brettanomyces lambicus* and *Hansenulla polymorpha* accumulate 27, 32, 6 and 33 g ethanol/l, respectively. This compares well to 20, 33, 32 g ethanol/l with the same strains grown for 3 day in 100 g glucose/l by Skory et al., (1997). The lowest ethanol production and the slowest growth were obtained with the basidiomycete *Polyporus eucalyptorum*. Crude extracts from all 7 strains of yeast catalyzed the formation of (R)-PAC from benzaldehyde and pyruvate, even though not all activities were measurable by the ADH-coupled assay for pyruvate decarboxylase. The strains cover the broad taxonomic spectrum of Ascomycota and Basidiomycota.

The highest final PAC concentrations (11.7 – 12.6 g/l) were obtained with extracts of *B. lambicus* and *Hansenulla polymorpha* can be compared with the 11.3 g PAC/l produced by crude extracts of the other yeast. Partially purified pyruvate decarboxylase of *Candida utilis* has been reported to yield 14.5 g PAC/l from the same substrate concentration under optimised conditions (Shin and Rogers 1996). Evaluating the two fungi that produced the highest PAC levels, *Hansenulla polymorpha* had the advantage of much faster growth than *B. lambicus*. The best initial productivities of 3.8 – 6.5 g PAC/l in 20 min, achieved with extracts that the 2.6 – 3.2 g PAC/l in 20 min produced by extracts of the yeasts *B. lambicus*. These initial activities are very high with respect to the final PAC concentrations, indicating the potential for a rapid biotransformation process. However, comparison of Fig. 3c, d demonstrates that a high initial productivity (e. g. strain 4) does not necessarily correspond to the highest final PAC yield. This is consistent with the finding that in fermentative PAC production with yeast, high initial rates did not inevitably result in high final yields (Netrval and Vojtisek 1982).

Only low protein connections (0.8 and 0.2 mg/ml) were recovered from *Polyporus eucalyptorum* and *Paecilomyces lilacinus*. Nevertheless these extracts yielded 11 and 4 mM PAC, respectively. The low pyruvate decarboxylase activities (0.0 – 1.6 U/ml) and low PAC formation (9- 11 mM) in crude extracts of ethanol were produced during fermentation, indicating active
pyruvate decarboxylase, and the protein recovery from the culture was also good. It is possible that proteases degraded the pyruvate decarboxylase.

Screening of the PAC-producing capacities of the yeast extracts was experimentally based on a defined culture volume. Comparisons of strains therefore fully take into account differences regarding produced biomass; ease of cell breakage, pyruvate decarboxylase concentration, and pyruvate decarboxylase chromatistics and final PAC yields to protein concentrations (Fig. 3e, f, respectively) possibly indicates differences in the relative pyruvate decarboxylase quantity and/or its quality. However, substrate concentrations might have been limiting. Since pyruvate decarboxylase was not purified, it is beyond the scope of this screening to determine qualitative differences between pyruvate decarboxylases of various strains.

For whole-cell process using various yeas strains, concentrations of 10-22 g PAC/l have been reported (Rogers et al., 1997). Fermenting culture of Hansenulla polymorpha yielded only 2.9 PAC/l. This could possibly be improved by the use of higher biomass concentrations and by adapted substrate feeding. However, the organism does not appear suited for fermentative biotransformation due to the rapid reduction of benzaldehyde to the by-product benzylalcohol. Fungi are well known for their potential to catalyse redox reactions. A list of various fungi used for biotransformations (Kieslich 1997) records 19 to the 48 listed Rhizopus strains as catalyzing keto-reductions and two for the reverse reaction. The only biotransformation recorded for Hansenulla polymorpha in this list is a glycosyl transfer. However, the problem of benzaldehyde loss due to reduction to benzylalcohol is overcome when extracts electron donors (e.g. NADH) are quickly consumed and not regenerated.

CONCLUSION

This study shows that (R)-PAC formation is not limited to the use of yeasts. Especially extracts of Hansenulla polymorpha are suited for (R)-PAC production with higher initial productivities and slightly higher final yields than obtained with extracts of the yeast Brettanomyce lambicus.

REFERENCES

9. Pohl M. Protein design on pyruvate decarboxylase (PDC) by site-directed mutagenesis. Adv. Biochem Eng / Biotechnol,

