INTRODUCTION

Plant Callicarpa macrophylla Vahl. (Family: Verbenaceae) is an important less known medicinal plant of the lower warm valleys of the Himalaya and is commonly known as Priyangoo or Daya. It is a perennial, deciduous shrub attaining 2.5mt. in height. Essential oil obtained from different parts of Priyangoo through steam distillation revealed oil content in young leaves and tender stem, panicles and seeds while no essential oil content was observed in the roots. All the parts are important and are used to cure many diseases. The bark is used to heal cuts and wounds. Seeds and roots are used for digestion and leaves are used in rheumatism. The fruits are used for blisters and boils. Various extract of this plant have shown anti-inflammatory, antifungal and antibacterial activities.1-4

MATERIAL AND METHODS

The fresh leaves of Callicarpa macrophylla Vahl. (Family: Verbenaceae) was procured from the Central Institute of Medicinal and Aromatic Plants (CIMAP) Lucknow (U.P) in October 2009. The plant was identified by a Taxonomist of the center and a specimen was kept for record.
RESULTS AND DISCUSSION

In the 1H NMR spectrum of the compound (1) a two proton downfield signal at δ 3.64 is assignable to methylene proton H-17 to which a hydroxyl group is attached. Another downfield signal at δ 2.31 was assigned to H-2 proton next to carbonyl function. The methyl proton signals resonates in the range δ 1.21-1.10.

The 13C NMR spectrum of the compound clearly indicates twenty signals which corresponds to its molecular formula C$_{20}$H$_{32}$O$_3$. In its 13C NMR spectrum a downfield signal at 213.4 was clearly indicated the carbonyl group at C-3. Another downfield signals at 72.1 and 76.8 were assigned to C-17 and C-16 to which hydroxy group is attached. On the basis of above finding the structure of the compound was characterized as Calliterpenone.

In its acetate (1a) an additional signal for acetyl proton in its 1H NMR appeared at δ 2.09. The rest of the signals are almost same except the signal of methylene proton H-17 which was slightly shifted in downfield region. In the 13C NMR spectrum of the compound(1a) an additional signals at δ 171.0 was reasonably designated to acetoxy carbon $^{5-8}$.

ACKNOWLEDGEMENTS

The authors are thankful to the Principal, G.F. College and Head, Department of Chemistry for providing facilities for carrying out this work.

REFERENCES