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In this paper  a method is proposed for  multichannel image registration which
combines the information from different methods to form a joint registration. This method
uses feature based information fusion through Gabor wavelet transformation and
Independent component analysis technique. This technique is more robust and accurate.
The medical images are analyzed and registered to find the various diseases like brain
tumour and hemorrhage.

Key words: Gabor filter, Independent component analysis, multichannel image registration.

In medical applications, one is concerned
with processing of chest X-rays, projection images
of tomography and other medical images that occur
in radiology and nuclear magnetic resonance
(NMR)  These images can be used for patient
testing and monitoring or for detection of tumors’
or other disease in patients.In MRI, different
protocols (T1,T2,FLAIR,mPrage and diffusion
tensor imaging (DTI), etc can also be viewed as
different methods.Every one of these methods
uses some distinctive and often complementary
characterization of the underlying anatomy and
tissue microstructure. The main goal of our project
is nonrigid inter-subject multichannel image
registration method which combines information
from different modalities/channels to produce a

unified joint registration. Multichannel images are
produced using co-registered multimodality images
of the same subject to utilize information across
modalities exensively. Comparing to the current
methods which combine the information at the
image/intensity level.

The suggested method uses feature-level
information fusion method to spatio-adaptively
combine the complementary information from
different modalities that characterize different
tissue types, through Gabor wavelets
transformation and Independent Component
Analysis (ICA), to produce a robust inter-subject
registration.

Multichannel image for each subject as
the co-registered collection of all single modality
images that represent the same anatomy. Analysis
of such images are referred to as multichannel Image
analysis. For e.g, T1 structural images cannot do
as well on on white matter in registration, as
compared to DTI, as DTI is a WM specific modality.
Usually, since different modalities characterize
different tissue types, using the information from
only one channel will result in reduced accuracy in
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the areas where the driving modality does not
characterize the underlying tissue type well. The
proposed multichannel image registration method
can integrate and enhance complementary
information while eliminating the less reliable/
redundant information from different channels and
leads to a more accurate and robust inter-subject
registration at low computational cost. Image
registration is the process of overlaying two or
more images of the same scene taken at various
points and times and  by various sensors. Image
registration is a important step in all image analysis
tasks in which the final information is gained from
the combination of various data sources. Image
registration or image alignment algorithms can be
classified into intensity-based and feature-based.
One of the images is referred to as the reference or
source and the second image is referred to as the
target or sensed. Image registration involves the
target image to align with the refererred image.
Methods
Module descriptions
Module 1

For various method, we use Gabor
wavelets, as Gabor wavelet transformation has
been shown to be optimal in the sense of minimizing
the joint uncertainty in space and frequency, and
has been widely used for feature extraction, and
hence, more appropriate for the purpose of
matching/registration.
Module 2

To incorporate all the relevant information
regarding each particular tissue type from different
modalities, and thus facilitate the subsequent
“Choose-Max” information fusion scheme, we
apply the independent component analysis (ICA)
on the Gabor features extracted. ICA has been
successfully applied in MRI enhancement,
functional MRI (fMRI) analysis and blind source
separation.
Module 3

After the ICA step, each IC of Gabor
features is “specialized” in depicting one particular
tissue type. Therefore, by using the Choose-Max
scheme on every voxel, we can select the optimal
Gabor features from the corresponding IC to
characterize the underlying structure.
Module 4

For every voxel, depending on the
optimal IC obtained through ICA and “Choose-

Max” scheme, divergence metric is used to find
the correspondence between two multichannel
images.
Module 5

Based on the divergence metric, the image
similiarity problem is defined as a cost function.
By optimizing it, the deformation field of the
registration is obtained.
Module 6
§ Image Acquisition and Preprocessing
§ Registration of Simulated Images
§ Registration of Real Images
§ Computational Efficiency
Feature Extraction

Image modalities have become available
for clinical/research studies, for instance, X-ray
computed tomography (CT), positron emission
tomography (PET) and magnetic resonance
imaging (MRI). In MRI, different protocols (T1,
T2, FLAIR, mPRAGE and diffusion tensor imaging
DTI), etc.) can also be viewed as different methods.

Every one of these methods provides
some distinctive and often complementary
characterization of the underlying anatomy and
tissue microstructure

Multichannel inter-subject registration is
rendered challenging because there could be
competing information from different methods.In
image processing, a Gabor filter, is a linear filter
used for edge detection. In the spatial domain, a
2D Gabor filter is a Gaussian kernel function
modulated by a sinusoidal plane wave. The Gabor
filters are self-similar: all filters can be generated
from one mother wavelet by dilation and rotation.
Gabor filters are directly related to Gabor wavelets,
since they can be designed for a number of dilations
and rotations. The filters are convolved with the
signal, resulting in a so-called Gabor space. Among
various wavelet bases, Gabor functions provide
the optimal resolution in both the time (spatial)
and frequency domains. Although the registration
is for 3D images, to improve the computational
cost, we use 3 perpendicular (axial, coronal, and
sagittal) 2D Gabor filter banks to extract the
features. A 2D Gabor filter can be viewed as a
sinusoidal plane of particular frequency and
orientation, modulated by a Gaussian envelope:
G(x,y)  = s(x,y) g(x,y)
where s(x,y) is complex sinusoid and g(x,y)  is 2D
gaussian envelope
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s(x,y) = exp .

g(x,y)  =  exp 

 and  characterize the spatial extent

and bandwidth of along the respective axes, and

are the shifting frequency parameters in the

frequency domain. Using  as the mother

wavelet,  a class of self-similar functions can be
obtained by appropriate dilations and rotations of
through:= where (xsin , a>1, indicates the number
of orientations, S the number of scales in the multi
resolution decomposition and a is the scaling factor
. These parameters can be set according to reduce
the redundant information (caused by the Non
orthogonality of the Gabor wavelets) in the filtered
images. Given an image I, the Gabor transform with
orientation n and m scale can be computed as

Where indicates the complex conjugate.
In our work, we set the Gabor filter to have S=4
scale levels and O=6 orientations. Gives the
examples of the extracted Gabor features using the
designed filter bank on T1, PD, T2 and FA images,
respectively. As we can see, on different locations,
scales and orientations, we need Gabor features
from different modalities to best delineate the
underlying structure.
=

Gabor features are obtained by convolve the input
image and mother wavelet using below equation

Independent Components of the Extracted Gabor
Features

To incorporate all the relevant information
regarding each particular tissue type from different
modalities, and thus facilitate the subsequent
“Choose-Max” information fusion scheme, we
apply the independent component analysis (ICA)
on the Gabor features extracted. ICA has been
successfully applied in MRI enhancement
functional MRI (fMRI) analysis and blind source
separation. The basic theory of applying ICA in
multichannel image analysis can be briefly
described as follows.Let X=denote the
multichannel image set generated by using different
imaging modalities or scanning parameters.

n is the number of modalities/channels
Let X is the signal we observed and it can be
considered as the linear mixture of many
independent sources, for instance water, blood,
fat, GM, WM, CSF, and muscle, etc. For applying
ICA for the analysis of multichannel images, there
are two steps: training and decomposition. In the
first step, a number of voxels are randomly selected
from a few sample multichannel images. After the
above optimization, when the algorithm converges
and the error is below a specified threshold, the
obtained decomposition matrix W can be applied

Block Diagram:

Input images Tissue-
Pertinent 
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Registration 

Fig. 1. Input Images a) T1 image b) T2 image c) Flair
image d) PD image

  
        (a)             (b)               (c)               (d) 

to decompose the new multichannel image into
independent component images, in which one of
the tissue type is highlighted. This decomposition
process can be viewed as an information
repartitioning process. Before decomposition, each
image channel contains information about a
combination of many tissue types. However, after
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decomposition, each independent component
image is “specialized” for capturing one tissue type
and contains all the relevant information (taken
from all the modalities) pertaining to that tissue
type. Because of this “purity,” the decomposed
independent component image provides higher
contrast and better characterization than the
original image. It is worthwhile to clarify that
although each tissue type will be highlighted in
one IC.

In this work, instead of applying ICA to
the multichannel image, ICA is applied to the

multivariate Gabor features, since our goal is to
separate the information in Gabor feature space
according to different tissue types. ICA  is
performed on all the Gabor features obtained from
different methods. We have proposed a general
framework for multichannel image registration. Here
we demonstrate its applicability on the combination
of a T1 and DTI image as an example, as these
images are routinely acquired in a clinical study.
Specifically, we use a multichannel image created
by combining T1 and five DTI-derived scalar
images to illustrate and test the proposed
algorithm.
Choose Max fusion using feature based method

The aim of the study was to address
registration of images acquired from the same
sensor under different conditions Image similarity-
based methods are broadly used in medical imaging.
A basic image similarity-based method consists of
a transformation model which is applied to
reference image coordinates to locate their
corresponding coordinates in the target image
space, an image similarity metric, which quantifies

Fig. 5. histogram of the registered image

Table 1. Summarization Of The Experimental Results
On The Real Images(t1,T2,Pd,Fa) After Ica

Images Max Mean Standarddeviation

T1 0.9373 0.1920 0.2094
After Ica 7.9799 2.3716 1.4864
Pd 0.5686 0.1557 0.1692
After Ica 4.4333 1.8463 1.1418
T2 0.7412 0.1408 0.1447
After Ica 7.1313 1.5746 1.0004
Fa 0.9961 0.1960 0.2210
After Ica 10.4132 2.2409 1.8511

Table 2. Summarization Of The Final Experimental
Results On The Real Images(t1,T2,Pd,Fa)

Images Max Mean Std Deviation

T1    .9373 0.1920 0.2094
Pd    .5686 0.1557 0.1692
T2   0.7412 0.1408 0.1447
Fa    .9961  0.1960 0.2210
Fused image     .9204  1.8866 1.3755
Registered 8.4030 1.4783 0.3451
Image

Fig. 3. Fused Image

Fig. 4. Registered Image
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the degree of correspondence between features in
both image spaces achieved by a given method to
maximize image similarity by changing the
transformation parameters. The choice of an image
similarity measure depends on the nature of the
images to be stored. Some of the measures include
Cross Correlation, Mutual Information, Mean-
square difference and Ratio Image Uniformity.
Mutual Information and its variant, Normalized
Mutual Information, are the most popular image
similarity measures for registration of multimodality
images. Cross-correlation, Mean-square difference
and Ratio Image Uniformity are commonly used
for registration of images of the same modality.

Mutual information is an information
theory measure of the statistical dependence
between two random variables or the amount of
information that one variable contains about the
other. It can be qualitatively considered as a
measure of how well one image explains the other.
After the ICA step, each IC of Gabor features is
“specialized” in depicting one particular tissue
type. Therefore, by using the Choose-Max scheme
on every voxel, we can select the optimal Gabor
features from the corresponding IC to characterize
the underlying structure. As the tissue type could
be different for different voxels, different
independent components (IC) are needed to
acquire the best characterization. Therefore,
“Choose-Max” scheme is adopted to select the
optimal IC according to the underlying tissue type.
In this method, the  information is kept and
enhanced while less reliable/redundancy is
reduced, via information fusion. Image similarity-
based methods are broadly used in medical imaging.
A basic image similarity-based method consists of
a transformation model which is applied to
reference image coordinates to locate their
corresponding coordinates in the target image
space, an image similarity metric, which quantifies
the degree of correspondence between features in
both image spaces achieved by a given
transformation, and an optimization algorithm.

RESULTS

The choice of an image similarity measure
depends on the nature of the images to be saved.
General examples of image comparison methods
include Cross Correlation, Mutual Information,

Mean-square difference and Ratio Image
Uniformity. Mutual Information and its variant,
Normalized Mutual Information, are the procedures
for registration of multimodality images. Cross-
correlation, Mean-square difference and Ratio
Image Uniformity are commonly used for
registration of images of the same modality.For
each voxel, based on the optimal IC obtained
through ICA and “Choose-Max” scheme,
dissimilarity metric is defined to find the
correspondence between two multichannel images.
Image Registration Methodology

Image registration,  is commonly used in
remote sensing, biomedical screening etc. In
common its uses can be divided into four main
groups according to the manner of the image
acquisition: Different viewpoints (multi view
analysis). Images of the same scene are obtained
from various viewpoints. The objective is to gain
larger a 2D view or a 3D representation of the
scanned  image.

CONCLUSION

A multichannel inter-subject image
registration framework that combines information
from different modalities based on feature-level
information fusion. The registration produces
spatially normalized images of all the modalities
acquired in the study. Thus the statistical analysis
done on these jointly spatially normalized images
is more comparable, as a unified registration scheme
has been used to register them.

The proposed registration method is
expected to be very useful in large population
clinical studies that acquire several modalities and
a unified spatial normalization is needed for
subsequent statistical analysis. Although the
method is general and is applicable to any number
of modalities on which feature can be computed,
we have applied it to the joint registration of
T1,T2,FA and PD images, which are routinely
acquired in all clinical studies. Experiments on both
simulated and real multichannel images ,illustrate
that the proposed method can effectively fuse the
information from different modalities and result in
a more accurate and robust registration. In the
future, we plan to explore more advanced fusion
schemes of the Gabor features. As an application,
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we also plan to apply this method on clinical
studies for joint comparative statistics on T1 and
DTI.
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