The Use of Laryngeal Mask Airway in Pilonidal Cyst Excision after Muscle Relaxant (Atracurium) Injection in Prone Position

Ahmad Rastegarian¹, Hassan Ali Abedi²*, AbdolAli Sepidkar³, Nasrin Kheyrkhah⁴, Hossein Kargar Jahromi⁵ and Mohammad Farzam⁶

¹Department of Anesthesiology, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
²Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
³Department of Surgery, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
⁴Student Research Committee, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
⁵Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran.
⁶Department of Anatomy and Embryology, International Branch, Shiraz University, Shiraz, Iran.

doi: http://dx.doi.org/10.13005/bbra/1351

(Received: 15 June 2014; accepted: 30 July 2014)

During general anesthesia a large number of surgeries such as pilonidal sinus excision are conducted in prone position. The main purpose of this research is the application of laryngeal mask airway in prone position in pilonidal cyst excision after Atracurium injection. A double-blind descriptive experiment was performed on 85 patients (ASA I–II), such that they reclined on the operating table in prone position. After preoxygenation, general anesthesia was induced by Midazolam, Fentanyl, Propofol, and Atracurium. At the same position, the laryngeal mask airway was placed. Heart rate, systolic and diastolic blood pressure was reduced significantly after anesthesia. Laryngeal mask airway insertion was successful in 78 patients on first try. Induction/incision time was reduced. Laryngospasm and pulmonary aspiration was not observed and rate of sore throat was 16/85 patients. Based on our data, it seems that for minor surgeries in prone position, laryngeal mask airway is applicable after the administration of muscle relaxant, although further studies are required.

Key words: General Anesthesia, Pilonidal Cyst, Laryngeal Mask Airway, Muscle Relaxant, Prone Position.

During general anesthesia a large number of surgeries such as pilonidal sinus excision are conducted in prone position¹. This position is not an ideal position for anesthesia, on account of problems such as impairment in endotracheal intubation or difficult mask ventilation or pulmonary compliance reduction². The usual technique in anesthetizing in prone position is conducted as follows: anesthesia induction and tracheal intubation on a trolley in supine position, then turning over to prone position on the operating table (1). This process has many complications such as hemodynamic and respiratory problems, central and peripheral nervous system injuries, pressure injuries and ophthalmological complications³. On the other hand, the duration of anesthesia and the number of needed personnel increases⁴. An alternative approach is to lay the patient on the operating table in prone and comfortable position and induce
anesthesia. The benefits of this technique include: reduction of pressure injuries on the patient, time saving and decreasing the number of personnel\(^3\). The problems associated with prone position such as Pulmonary Hypoventilation or Aspiration dissuades the anesthesiologist to make use of LMA in prone position\(^6\). Application of laryngeal mask airway in prone position with spontaneous breathing has been reported by some studies\(^5\). In one study, after proper placement of the mask and muscle relaxant injection (Atracurium), mechanical ventilation was performed\(^4\). Therefore, the main purpose of the research was the application of laryngeal mask airway for pilonidal cyst excision after muscle relaxant (Atracurium) injection in prone position.

MATERIAL AND METHODS

A double-blind descriptive study was performed on 85 patients (ASA I–II) who undertook the pilonidal cyst excision after obtaining ethics committee approval and patient’s consent. Severe skeletal disease, airway difficulties, dental problems, lack of cooperation and history of gastroesophageal regurgitation were considered as exclusion criteria.

Before induction of anesthesia, the patients were asked to recline on the operating table in prone position and hands above the head. Pillows were placed under the breast and pelvis to facilitate abdominal breathing\(^4\). After preoxygenation, general anesthesia was induced by Midazolam (0.05 mg/Kg) Fentanyl (1 µg/kg), Propofol (2-4 mg/kg) and Atracurium (0.5 mg/kg). Then while the patient’s head was tilted to one side, the lungs were ventilated by face mask for two to three minutes. At the same position, according to patient weight and manufacturer’s instruction, the laryngeal mask airway was placed on patients\(^4\). Isoflurane 1% with mixture of Nitrous oxide and oxygen (1:2) was used for maintenance of anesthesia. Combination of neostigmine (0.04 mg/Kg) and atropine (0.02 mg/Kg) were used to reverse the muscle relaxation in prone position.

The following variables were recorded: heart rate, systolic, and diastolic blood pressure (before and after induction), oxygen saturation, end tidal co\(_2\), LMA malpositioning, sore throat, laryngospasm, pulmonary aspiration, induction/incision time, additional required personnel, and nose or mouth bleeding.

Descriptive statistics and Paired Samples t Test were used in statistical analysis by SPSS software program (SPSS Inc, Chicago, IL). Data are presented as mean ± SD. A p<0.05 was determined as significant.

RESULTS

This study was done on 85 patients (47 men, 38 women) under general anesthesia with LMA. Characteristics of the patients are shown on table 1. After induction of anesthesia, heart rate (92.45±7.93 vs. 80.95±3.34 pulse/min), systolic (127.53±6.48 vs. 109.94±5.64 mmHg), and diastolic blood pressure (86.94±4.64 vs. 79.06±3.23 mmHg) were reduced (table 2). LMA insertion was successful in 78 patients on first try. Induction/incision time was 2.18±1.22 min. Spo2 was > 94% and ETco2 was between 30 - 35 mmHg. Laryngospasm, pulmonary aspiration and nose or

Table 1. Characteristics of patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>88/12 ± 20/39</td>
<td>15</td>
<td>68</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>09/15 ± 22/68</td>
<td>49</td>
<td>96</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>66/31 ± 47/173</td>
<td>163</td>
<td>187</td>
</tr>
<tr>
<td>Body Mass index (Kg . m(^{-2}))</td>
<td>15/9 ± 71/23</td>
<td>12/23</td>
<td>87/26</td>
</tr>
</tbody>
</table>

Table 2. Hemodynamic data before and after induction of anesthesia

<table>
<thead>
<tr>
<th>Variables</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean±SD</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (pulse/min)</td>
<td>Before induction</td>
<td>83</td>
<td>122</td>
<td>92.45±7.93</td>
</tr>
<tr>
<td></td>
<td>After induction</td>
<td>79</td>
<td>103</td>
<td>80.95±3.34</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>Before induction</td>
<td>115</td>
<td>135</td>
<td>127.53±6.48</td>
</tr>
<tr>
<td></td>
<td>After induction</td>
<td>100</td>
<td>115</td>
<td>109.94±5.64</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>Before induction</td>
<td>80</td>
<td>90</td>
<td>86.94±4.64</td>
</tr>
<tr>
<td></td>
<td>After induction</td>
<td>80</td>
<td>80</td>
<td>79.06±3.23</td>
</tr>
</tbody>
</table>
mouth bleeding was not observed and sore throat rate was 16/85 patients. Additional personnel were not required (table 3).

DISCUSSION

According to the results of our research, LMA insertion:

- Was successful in all patients and provided suitable ventilation,
- Did not increase heart rate and blood pressure,
- Did not cause laryngospasm and pulmonary aspiration,
- Decreased induction/incision time and the number of required persons.

The reasons for successful and easy LMA insertion include: move to forward of tongue and jaw and away from the posterior pharyngeal wall under the influence of gravity(8) and use of muscle relaxant before LMA insertion(9). The use of pillows under abdomen and pelvis caused abdominal movement without restriction and suitable ventilation(4) which was confirmed by spo2>94% and normal range of ETco2.

The use of LMA raised blood pressure, although hemodynamic changes after LMA insertion are smaller than endotracheal tube intubation (10, 11). Our data showed that heart rate, systolic, and diastolic blood pressure were reduced after LMA insertion. The reduction related to anesthetic agents was not induced by LMA insertion (12,13).

Direct trauma induced by LMA and reduction of blood flow to the throat induced by LMA cuff pressure causes sore throat(14). Previous studies have reported between 8.1 % and 34 % of sore throats (15-18).

Based on our data, it seems that for minor surgeries in prone position, LMA is applicable after the administration of muscle relaxant, although further studies are required.

REFERENCES

11. Marietta DR, Lunn JK, Ruby EI, Hill GE.

