Stability and Storage Studies on Banana Pulp by Ohmic Heating and Conventional Heating
P. Poojitha and K. A. Athmaselvi
Department of Food Process Engineering School of Bioengineering SRM UNIVERSITY, Kattankulathur, Chennai-603203, Tamilnadu.
DOI : http://dx.doi.org/10.13005/bbra/2157
ABSTRACT: The demand for fresh foods with longer shelf life is increasing day by day. The conventional pasteurization reduces the microbial count but easily affects the organoleptic properties. In order to enhance the shelflife and quality of the product ohmic heating technique is used. Ohmic heating is a fast heating method for food products. This is a food processing technique in which the liquid or semi-solid foods are sterilized without any physical damage as caused in conventional heating. In ohmic heating processes, foods are made part of an electric circuit through which alternating current flows, causing heat to be generated within the foods due to the electrical resistance of the foods. In this study, banana pulp without sugar and with different concentrations of sugar is ohmically heated and the changes in physiochemical properties are compared with that of conventional heating. The electrical conductivity, pH, total soluble solids, acidity before and after heat treatment were also analysed. Meanwhile, the pulp was stored in refrigeration temperature without adding preservatives and the shelf life of the ohmic heated and conventional heated banana pulp was also studied. Consequently, it is been found that ohmic heated pulp has maximum shelf life than conventionally heated pulp.
KEYWORDS: Ohmic heating; Conventional heating; Banana pulp; Physiochemical properties; shelf life
Download this article as:Copy the following to cite this article: Poojitha P, Athmaselvi K. A. Stability and Storage Studies on Banana Pulp by Ohmic Heating and Conventional Heating. Biosci Biotech Res Asia 2016;13(2) |
Copy the following to cite this URL: Poojitha P, Athmaselvi K. A. Stability and Storage Studies on Banana Pulp by Ohmic Heating and Conventional Heating. Biosci Biotech Res Asia 2016;13(2).Available from: https://www.biotech-asia.org/?p=12954 |