Development of an Invasive Device for Long-Term Remote Monitoring of Cardiovascular System Parameters, Including Blood Pressure, in Patients with Comorbid Conditions
Victor Aleksandrovich Stupin1 , Ekaterina Vladimirovna Silina2 , Rafael Gegamovich Oganov3 , Yevgeny Anatolevich Bogdanov4 and Natalia Nikolaevna Shusharina4
1Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova str, 1, Moscow, 117997, Russia 2I.M. Sechenov First Moscow State Medical University (First MSMU), Trubetskaya str, 8, Moscow, 119991, Russia 3The National Research Center for Preventive Medicine, Petroverigsky str. – 10, Moscow, 101000, Russia. 4Immanuel Kant Baltic Federal University (IKBFU), Nevskogo Str., 14, Kaliningrad, 236041, Russia
ABSTRACT: The aim of the study is to develop an invasive device for long-term remote monitoring of cardiovascular system parameters, including blood pressure, in patients with comorbid conditions. Such a device is an important solution of a medical problem – continuous monitoring of patients with hypertension, arrhythmias, chronic heart failure and other comorbid vascular conditions.We developed a pilot model of a device for long-term remote monitoring of blood pressure (systolic, diastolic, mean), heart rate and other calculable parameters of cardiovascular system. We developed a model of a capacitive sensor based on a microelectromechanical system technology (MEMS), equipped with a continuously-adjustable capacitor, wireless data communication and electric power supply. Transmitter model is developed. Engineering tests of device prototype were performed. Experimental work demonstrating the feasibility of converting the collected signals into mm of Hg for the measurement of blood pressure changes and steady radiosignal transduction to the transmitter was performed.A variant of biocompatible cover was chosen – silicone and parylene C. The sensor is designed to be implanted into human or animal body and can be situated either in the vessel lumen or on the vessel wall.
KEYWORDS: microelectromechanical systems (MEMS); pressure sensor; blood pressure; medical invasive device
Download this article as:Copy the following to cite this article: Stupin V. A, Silina E. V, Oganov R. G, Bogdanov Y. A, Shusharina N. N. Development of an Invasive Device for Long-Term Remote Monitoring of Cardiovascular System Parameters, Including Blood Pressure, in Patients with Comorbid Conditions. Biosci Biotech Res Asia 2015;12(2) |