Impact of Plant Invasions on Local Vegetation: An Indian Perspective

Waseem Mushtaq^{1*}, Adnan Shakeel², Mohammad Mehdizadeh³ Sameera A. Alghamdi^{4,5} and Khalid Rehman Hakeem^{4,5*}

 ¹Alleopathy laboratory, Department of Botany, Aligarh Muslim University, Aligarh- 202002, India.
²Environmental section, Department of Botany, Aligarh Muslim University, Aligarh- 202002, India.
³Department of Agronomy and Plant Breeding, University of Mohaghegh Ardabili. Ardabil. Iran.
⁴Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
⁵Princess Dr Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.

http://dx.doi.org/10.13005/bbra/2792

(Received: 18 October 2019; accepted: 27 December 2019)

Invasive species are key operators of worldwide ecological change causing the loss of biodiversity, modifying structure and functioning of bio-system, and disturbing establishment of ecosystem amenities throughout the world. About 8.6% of the overall flora of India is alien. Aconsiderable rise in worldwide trade and travel is expected to accelerate entry, spreading and eventual establishment of foreign species in India. Whereas the systematic catalogue of non-native species incarnates the primary vital stage, however, more comprehensive investigations on description of alien species in India, study of their potential invasion environments, recognition of possible ways of invasion and their impact on local vegetation are still missing. The present study reports the incidence of 173 species of alien flora in India, their origins from different parts of the globe belonging to a diverse array of families with an emphasis on the adverse effect of important invasive species on the local vegetation so as to generate an understanding of plant invasions and develop policy framework for their management.

Keywords: Ecosystem; Invasive species; Management.

Invasive plants are the ones that have been deliberately or unintentionally brought to regions other than their natural habitats and cause serious implications to economy, environment, vegetation and humans in the invaded areas. These plants expand rapidly and threaten the local vegetation by competing for water, space and nutrients. The invasive species modify the light, temperature and solar radiation availability in the invaded area. The access to food, shelter, and relaxing sites are modified for many animals as well. This can result in variations in local vegetation, rate of recurrence of fires, nutrient cycling, water accessibility and soil structure. However, a few cases have reported benefits of invasive plants^{1, 2, 3}. For instance, they can offer fire wood to local people or supplement resources for native animal species. However, these advantages do not outperform the negative

*Corresponding author E-mail: kur.hakeem@gmail.com

This is an ⁽²⁾ Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Published by Oriental Scientific Publishing Company © 2019

impacts. Intrusive plants affect local species through complex interactions and routes. Lest these aspects are appropriately comprehended, it is hard to foresee what kind of effect invasive plants will have.

The global annual damage from invasive alien species (IAS) in different parts of the worldhas been assessed \$30 billion in USA⁴, ϵ 12 billion in Europe⁵, and US \$14 billion in China⁶. In perspective of these environmental and financial effects of IAS, a resolution on biodiversity in Nagoya, Japan (2010) implemented the tactical proposalfor biological diversity 2011-20 for IAS identification and recognition of their pathways were prioritized and measures were encouraged to counter their introduction and establishment.

As in many other countries, alien plants⁷have also plagued India and its magnitude will further intensify because of expanding Indian economy. Actually, the size of stock imports is a critical determining factor of the extent of IAS⁸in addition to the frequency of introduction of foreign species. Being a rich mega-biodiverse land, the implications of IAS on the preservation and sustainable usage of biodiversity would be quite articulated in India. Henceforth, there is an immenserequirement to construct an integrated structure for the forecast, anticipation, fast reaction and control of alien plant intrusions in India. The present review addresses characteristics of invasive species, recognizes 173 IAS in India and gives the impact of few important alien plants (Lantana camera L., Parthenium hysterophorus L., Nicotiana plumbaginifolia Viv. and geratum conyzoides L.) on local vegetation.

Distinctivecharacteristics of Invasive species

Invasive species have trademark characteristics in diverse soil types and different environmental setups. These are generalist in distribution, avoided by grazing animals, abundance in poor soils as the interspecific competition has been removed due to selective grazing of other native grasses, short life cycle, high reproductive input, high dispersal rates, produces small and light weighted seeds that could be dispersed easily by winds providing them with the advantages of exploring more long habitats⁹, broad and abundant native range. IAS usually contain comparatively little amounts of genetic material in their cell nuclei¹⁰. Evidently, their cells undergo quick mitosis and duplicate rapidly and subsequently the whole plant can develop briskly as compared toother plants with greater genomic content. It provides a massive advantage to IAS in distressed landscapes.

Invasive plants in India

The World Conservation Monitoring Centre (WCMC) recognizes 1,604,000 plant species worldwide and India shares 8% of it. A total of 15000 angiospermic plants are found in India, out of which 4900 are native, i.e. only 33%11. Hajra and Mudgal¹² have reported 5400 endemics out of a total of 17000 angiospermous plants of India. India is an essential focal point of the world agriculture as it has given 167 species to the mankind and has been home to 320 wild crop species. The currentreview has focused on 173 IAS in India (Table 1). These species are the etremee stubborn invasive plants of a diverse array of families as Mimosacceae, Asteraceae, Amaranthaceae, Papilionaceae, Solanaceae, Convolvulaceae and others.

Selected Problematic Invasive Weeds in India *Lantana camera* L.

Lantana camera L. is a member of Verbenaceae family well known for its invasive nature and is considered among the world's top 10 worst weeds. In India, it was introduced at the beginning of 19th century. Since its invasion to India, it has created a major problem to native flora of many states. L. camerahas flourished in plains of India as well as is Himalayan regions¹³. Due to its allelopathic action it causes a serious threat to native vegetation. It contains several allelochemicals viz: phenolics, methylcoumarin, umbelloferone and salicylic acid. Among all these allelochemicals, salicylic acid is the most phytotoxic¹⁴. A recent report claims the occurrence of toxic allelochemicals in Lantana¹⁴. L. camera shows a significant effecton seed germination and growth of native vegetation^{15, 16, 17}.

Parthenium hysterophorus L.

Parthenium hysterophorus L. is a member of Asteraceae family, also known as congress grass is considered among 100 most invasive species in the world. In more than 40 countries, it is regarded as an obnoxious weed of field crops¹⁸. It has entered India accidently through conjugation with imported food from the USA between the period of 1950s to 1960s¹⁹. Its presence was first detected in Pune, Maharashtra (1955). After that it was delineated taxonomically by Rao in 195619. It has the potential of quick colonization with several other characteristics, such as wide adaptability, less number of natural niche enemies, drought tolerance, prolonged viability of seeds, high production of seeds, seeds with small size and light weight, long dispersal of seeds through air, water, birds and other carriers, strong competition and allelopathy makes it a successful invader of crop fields¹⁸. Besides that, it is also capable of causing human health problems like skin allergies, irritation of eyes with mild fever. It is unappetizing and harmful to farm animals. Various allelochemicals have been extracted from the roots, stem, leaves, inflorescence, spores and seeds. These include soluble phenolics and sesquiterpene lactones. The occurrence of plant growth suppressors in P.hysteriphorus was first reported by Rajan²⁰ and Kanchan²¹. Along with Parthenin, other inhibitors such as caffeic acid and p-coumaric acid were also found in the stem²¹ of this weed. The leaf leachates of P. hysterophorusshow inhibitory effectson several agricultural and tree crops^{22, 23}.

Nicotiana plumbaginifolia Viv.

Nicotiana plumbaginifolia Viv. (Solanaceae family)a native of Cuba, South America and Caribbean is reported as a weed of wastelands and cultivated lands. It is considered as an agricultural weed as well²⁴. It is invasive in India and is regarded as an aggressive colonizer²⁵. This herbaceous plant also has some medicinal values²⁶. The allelochemicals isolated from its leaves are hexamethoxy42,52 methylenedioxy flavone, exoticin, dimethylenedioxy 3,5,32 trimethoxy flavone and hexamethoxy 6,7 methylenedioxy flavone. Mushtaq et al.^{25, 28} found the plant has serious growth inhibitory properties on other plants. Mushtaq and Siddiqui²⁹have reported the negative growth effects of other members of Solanaceae family as well.

Ageratum Conyzoides L.

Ageratum conyzoides L. is a member of Asteraceae family is reported as a noxious weed in agricultural fields and a colonizer of open degraded lands. It is native to South and Central America³⁰. It also serves as a host to pathogens including nematodes thus, affects crops³¹. Soon after its invasion on land, it suppresses the local vegetation causing inadequacy of fodder. Its invasion to forests critically threatens many of essential medicinal and aromatic plants. *A. conyzoides*was identified in India before 1882³². Ageratum has been reported to suppress growth and yield of native crop species through the release of various phenolics and volatile oils³³. Besides its effect on crops, it also affects human health due to its strong pungent odor. Nausea, allergy and giddiness are some of the health problems caused by this weed in humans. **Role of floods in plants invaions**

Researchers believe that the prevalence

of invasive plants is one of the most important environmental problems in Kerala India. Particularly after the floods, the prevalence of invasive plants in this area has increased. Seasonal flooding has a direct effect on plant invasion to new environments³⁴. Many plant species inhabiting mountain regions enter the plains and agricultural ecosystems through flood flows, and some of these species have a high potential for conversion into invasive weed species. These plants due to their specific biological, morphological and physiological characteristics and high adaptability to climatic conditions, has potential to rapidly grow and reproduction in new environments and compete with crops as invasive weeds³⁵. Shafroth et al.³⁶evaluated the importance of flood events on the establishment ofweeds and found thatSaltcedar (Tamarix ramosissima) have potential to establish in new lands after floods.Floods can be considered as a seed carrier of plant species³⁷ which often transmits the seeds of invasive species to new environments depending on their biological status³⁸. Cuda et al.³⁹studied the effects of floods on weed invasion in Europe regions and reported Impatiens glandulifera as an invasive weed due to floods and spreading through river corridors. Management

Generally, the management of prolific invasive plant species is one of the most important agricultural and environmental challenges in India. These plants have potential for threaten ecosystems, capture the ecological niches in agricultural systems, and cause many problems in agricultural production. Therefore, it is very important to prevent the establishment and effective management of these plants. In order to prevent the entrance and establishment of invasive plants in new environments, all processes related

Family	Botanical name	Habit	Origin
Acanthaceae	Peristrophepaniculata (Forssk.) Brummitt Ruelliatuberosa L.	Herb	Tropical America
Amaranthaceae	Digeramuricata (L.) Mart.	Herb	South-West Asia
	Celosia argentea L.		Tropical Africa
	Alternantheraparonychioides A. St. Hil		Tropical America
	Alternantheraphiloxeroides (Mart.) Griseb		
	Alternantherapungens Kunth		
	Alternantheratenella Colla		
	Gomphrenaserrata L.		
Apocynaceae	Catharanthus pusillus (Murray) Don	Herb	Tropical America
Arecaceae	Borassusflabellifer L.	Tree	Tropical Africa
Araceae	Pistiastratiotes L.	Herb	Tropical America
Asclepiadaceae	Cryptostegiagrandiflora R. Br.	Herb	Madagascar
	Asclepiascurassavica L.		Tropical America
	Calotropisgigantea (L.) R.Br.	Shrub	Tropical Africa
	Calotropisprocera (Ait.) R.Br.		
Asteraceae	Echinopsechinatus Roxb.	Herb	Afghanistan
	<i>Glossocardiabosvallea</i> (L. f.) DC.		East Indies
	Sonchus asper Hill		Mediterranean
	Sonchusoleraceus L.		T
	Dicomatomentosa Cass.		Tropical Africa
	Ageratinaadenophora (Spreng.) King & Robinson		Tropical America
	Ageratum conyzoides L. Ageratum houstonianum Mill.		
	Bidenspilosa L.		
	Blainvilleaacmella (L.) Philipson		
	Blumeaeriantha DC.		
	Blumealacera (Burm.f.) DC.		
	Blumeaobliqua (L.) Druce		
	Chromolaenaodorata (L.) King & Robinson		
	Conyzabipinnatifida Wall.		
	Crassocephalumcrepidioides (Benth) Moore		
	Emilia sonchifolia (L.) DC.		
	Ecliptaprostrata (L.) Mant.		
	Galinosogaparviflora Cav.		
	Gnaphaliumcoarctatum Willd.		
	Gnaphaliumpensylvanicum Willd.		
	Gnaphaliumpolycaulon Pers.		
	Grangeamaderaspatana (L.) Poir.		
	Flaveriatrinervia (Spreng.) C. Mohr.		Tropical Central America
	Lagasceamollis Cav.		
	Tridaxprocumbens L.		
	Parthenium hysterophorus L.		Tropical North America
	Spilanthesradicans Jacq.		Tropical South America
	<i>Xanthium strumarium</i> L.		
	Youngia japonica (L.) DC.		
	Youngia japonica (L.) DC.	C1:1	Transiant A
	Mikaniamicrantha Kunth	Climber	Tropical America
Dalaaminaaaaa	Synedrellanodiflora (L.) Gaertn.	Herb	West Indies
Balsaminaceae Brassicaceae	Impatiens balsamina L.	Herb	Tropical America
Diassicaceae	Cardaminehirsuta L.		

Table 1. Invasive alien plants in India

	Cardaminetrichocarpa Hochst. ex A.Rich.		
	Rorippadubia (Pers.) Hara		
Cactaceae	<i>Opuntiastricta</i> (Haw.) Haw.	Herb	Tropical America
Caesalpiniaceae	Cassia absus L.	Herb	Tropical America
Cuesuipiniueeue	Cassia alata L.	Shrub	West Indies
	Cassia hirsuta L.	Herb	Tropical America
	Cassia obtusifolia L.	nero	riopical / interied
	Cassia occidentalis L.		Tropical South America
	Cassia pumila Lam.		Tropical America
	1		Hopical America
	Cassia pumila Lam.		Tranical South America
	Cassia rotundifolia Pers.		Tropical South America
	Cassia tora L.		
01	Cassia uniflora Mill.	TT 1	T : 14C:
Cleomaceae	Cleome monophylla L.	Herb	Tropical Africa
	Cleome gynandra L.		Tropical America
	<i>Cleome rutidosperma</i> DC.		
	Cleome viscosa L.		
Convolvulaceae	Euphorbia heterophylla L.	Herb	Tropical America
	Evolvulusnummularius (L.) L.		
	Ipomoea carnea Jacq.		
	Ipomoea eriocarpa R. Br.		Tropical Africa
	Ipomoea hederifolia L.		Tropical America
	Ipomoea obscura (L.) KerGawl.		Tropical Africa
	Ipomoea pes-tigridis L.		Tropical East Africa
	Ipomoea quamoclit L.		Tropical America
	Merremiaaegyptia (L.) Urban.		Tropical America
	Ipomoea staphylina Roem. &Schult.		Tropical Africa
Cyperaceae	Cyperusdifformis L.	Herb	Tropical America
51	Cyperusiria L.		
	<i>Fuirenaciliaris</i> (L.) Roxb.		
Euphorbiaceae	Chamaesyce hirta (L.) Millsp.	Herb	Tropical America
1	Chamaesyceindica (Lam.) Croizat		Tropical South America
	Chrozophorarottleri (Geis.) Spreng.		Tropical Africa
	Croton bonplandianum Boil.		Temperate South America
	Euphorbia cyathophora Murray		Tropical America
	Phyllanthustenellus Roxb.		Mascarene Islands
	Synadeniumgrantii Hook. f.		Tropical America
Lamiaceae	Poit. <i>Leonotisnepetiifolia</i> (L.) R.Br.	Herb	Tropical Africa
Lamaccac	Hyptissuaveolens (L.)	11010	Tropical America
	Ocimumamericanum L.		Hopical America
Liliaceae		Herb	Tropical America
Malvaceae	Asphodelustenuifolius Cav. Malachracapitata (L.) L.		
Marvaceae		Herb	Tropical America
	Malvastrumcoromandelianum (L.) Garcke		
	<i>Sidaacuta</i> Burm. f.		
	Urenalobata L.		Tropical Africa
Melastomataceae	Clidemiahirta (L.) D. Don	Herb	Tropical America
Mimosacceae	Acacia mearnsii De Wild.	Tree	South-East Australia
	Acacia farnesiana (L.) Willd.		Tropical South America
	Leucaenaleucocephala (Lam.) de Wit	Herb	Tropical America
	Mimosa pigra L.	Shrub	
	Mimosa pudica L.		
	Prosopisjuliflora (Sw.) DC.	Herb	Mexico
Nyctaginaceae	<i>Mirabilis jalapa</i> L.	Herb	Tropical America
Onagraceae	Ludwigiaadscendens (L.) Hara		
-	Ludwigiaoctovalvis (Jacq.) Raven		Tropical Africa
	Ludwigiaperennis L.		-
	<u> </u>		

768	MUSHTAQ et al., Biosci., Biotech. Res. Asia, Vol.	16 (4), 763-77	71 (2019)
Oxalidaceae	Oxalis corniculata L.	Herb	Europe
Papaveraceae	Argemonemexicana L.	Herb	Tropical Central &
1	0		South America
Papilionaceae	Aeschynomeneamericana L.	Herb	Tropical America
	Crotalaria pallida Dryand		
	Crotalaria retusa L.		
	Cytisusscoparius (L.) Link		Europe
	Indigoferaastragalina DC.		Tropical America
	Indigoferaglandulosa Roxb. exWilld.		
	Indigoferalinifolia (L.f.) Retz.		Tropical South America
	Indigoferalinnaei Ali		Tropical Africa
	Indigoferatrita L.f.		
	Stylosantheshamata (L.) Taub.	~ .	Tropical America
	Ulexeuropaeus L.	Shrub	Western Europe
	Macroptiliumatropupureum (DC.) Urban	Climber	
	Macroptiliumlathyroides (L.) Urban		Tropical Central America
	Melilotus alba Desv.	Herb	Europe
	Sesbaniabispinosa (Jacq.) Wight	Shrub	Tropical America
	Echinochloacolona (L.) Link	Herb	Tropical South America
	Echinochloacrusgalli (L.) Beauv.		The start America
	Imperatacylindrica (L.) Raensch.		Tropical America
	Pennisetumpurpureum Schum.		
	Rhynchelytrumrepens (Willd.) C.E. Hubb.		The start West Asia
Dessifteresses	Saccharumspontaneum L.	Hauk	Tropical West Asia
Passifloraceae Pedaliaceae	Passiflorafoetida L.	Herb Herb	Tropical Sourth America
Pedallaceae	<i>Martyniaannua</i> (Houstoun&Martyn) L. <i>Pedalium murex</i> L.	nelo	Tropical America
Diperacease		Herb	Tropical Sourth America
Piperaceae Pontederiaceae	Peperomiapellucida (L.) Kunth Eichhorniacrassipes (C. Martius) Solms-Loub.	Herb	Tropical Sourth America Tropical America
Fonteuerlaceae	Monochoriavaginalis (Burm. f.) C. Presl.	neib	Hopical America
Portulacaceae	Portulacaoleracea L.	Herb	Tropical South America
Tortulacaecae	Portulacaquadrifida L.	mero	Tropical America
Rubiaceae	Spermacocehispida L.	Herb	Tropical America
Salviniaceae	Salviniamolesta D. S. Mitch.	Herb	Brazil
Scrophulariaceae	Mecardoniaprocumbens (Mill.) Small	Herb	Tropical North America
Serophananaeeae	Scrophulariaceae	11010	itopicul itoliul interiou
	<i>Scopariadulcis</i> L.		Tropical America
	Toreniafournieri Linden ex E. Fournier		Australia
Solanaceae	Daturainnoxia Mill.	Shrub	Tropical America
	Daturametel L.		Tropical America
	Nicotiana plumbaginifolia Viv.	Herb	Tropical America
	Physalisangulata L.		*
	Physalispruinosa L.		
	Solanumamericanum Mill.		
	Solanumseaforthianum Andrews	Climber	Brazil
	Solanumtorvum Sw.	Shrub	West Indies
	Solanumviarum Dunal	Herb	Tropical America
Tiliaceae	Corchorustridens L.	Herb	Tropical Africa
	Corchorustrilocularis L.		
	Triumfettarhomboidea Jacq.		Tropical America
	Corchorusaestuans L.		
	Corchorusfascicularis Lam.		
Turneraceae	Turnerasubulata J. E. Smith	Herb	Tropical America
Typhaceae	Typhaangustata Bory. and Choub.	Herb	Tropical America
Urticaceae	Pileamicrophylla (L.) Liebm.	Herb	Tropical Sourth America
Verbenaceae	Lantana camara L.	Herb	Tropical America

Stachytarphetajamaicensis (L.) Vahl Stachytarphetaurticaefolia (Salisb.) Sims Tribuluslanuginosus L. Tribulusterrestris L.

Herb Tropical America

to the import of seeds and reproductive organs of new plants, planting and transfer of plants in new areas should be carefully monitored and prevented from introduction of suspected plant species. Where preventive strategies are not successful, the rapid detection of areas occupied by these plants and complete eradication in the early stages of their establishment is very important.In the case of established invasive plants, preventing the distribution and transmission of seeds and reproductive organs can lead to manage the development of plant invasion. Srivastava et al.¹⁶reported 149 invasive plants from North-Eastern Uttar Pradesh, India, and concluded that early identification and reporting of infestation and spread of these plants is very important for their effective management.Biological control method is one of the most effective methods for managing invasive plant species. The most important advantage of the biological control method for invasive plant species is that, after the establishment of biological control agents, a sustainable and longterm management of invasive species is achievable. Wheeler et al⁴⁰ reported biological control as a successful method for management of invasive weed Schinus terebinthifolia.

Zygophyllaceae

CONCLUSIONS

Invasive species form the second most serious threat to biodiversity after habitat destruction. Some invasive weed species make a dramatic impact on the processes of ecosystems and biodiversity when they invade. Invasion of an alien species is habitat-dependent. Generally the habitats that are nutrient-rich witness more conquestas compared to poor habitats. High reproductive potential, short life cycle and production of many seeds/propagules are some characteristic traits associated with successful invaders. Our analysis summarises the evidences for the impact of alien plant species on many ecological variables. Recently, the negative effects of alien species on resident crops and the mechanisms for these effects have attracted the focus of researchers. The decrease in local plant species due to invasive species and their development was the main focus of this review.

From the available literature it becomes evident that invasive species have both positive as well as negative impacts. This dual cost nature of many invasive species creates conflict of interests among stakeholders. Therefore, during the management of invasive alien species a uniform management policy cannot be adopted. The invasion of many weed species harmed Indian native flora e.g. Lantana camara invasion to India proved dreadful. Currently this invasive weed occupies 13 million hectares of land and further continues to expand its establishment because of its high invasive potential. The control of these invasive weeds may help in protection and restoration of biodiversity. Because of the fast economic globalization and increased trade with other countries, India has become a good recipient for alien invasive species. There is a need to inventorize the alien flora of India so that the research on invasion biology can be geographically understood. These inventories will act as scientific baselines to understand the pattern, impact and management of invasive plant species in India.

ACKNOWLEDGEMENT

Authors are thankful to the Aligarh Muslim University, Aligarh, India; fortheir support in the collaboration of this project.

REFERENCES

- 1. Chapman P. M. Negatives and Positives: Contaminants and Other Stressors in Aquatic Ecosystems. *Bulletin of Environmental Contamination and Toxicology*, 2018; **100**(1):3-7.
- Rejmankova E., Sullivan B. W., Ortiz Aldana J. R., SnyderJ. M., Castle S. T. and Reyes Morales F. Regime shift in the littoral ecosystem of volcanic Lake Atitlán in Central America:

combined role of stochastic event and invasive plant species. *Freshwater Biology*, 2018; (9):1088-1106.

- 3. Quijon P. A., Tummon F. P. and DuarteC. Beyond negative perceptions: The role of some marine invasive species as trophic subsidies. *Marine Pollution Bulletin*, 2017; **116**(1-2):538.
- 4. Pimentel D., Zuniga R. andMorrison D. Update on the environmental and economic costs associated with alien invasive species in the United States. *Ecol Econ*, 2005; **52**: 273–288.
- 5. Kettunen M., Genovesi P., Gollasch S., Pagad S., Starûnger U., ten Brink P. and Shine C. (2008). Technical support to EU strategy on invasive species (IS)—assessment of the impacts of IS in Europe and the EU (Final module report for the European Commission). Institute for European Environmental Policy (IEEP): Brussels, pp40 ?Annexes, May 2008 (DG ENV contract).
- Xu H. G., Ding H., Li M.Y., Qiang S., Guo J. Y., Han Z. M., Huang Z. G. Sun H. Y., He S. P., Wu H. R. and Wan F. H. The distribution and economic losses of alien species invasion to China. *Biological Invasions*, 2006; 8: 1495-1500.
- Goyal A. K., Arora S. (2009). India's Fourth National Report to the convention on biological diversity. Ministry of Environment and Forests, Government of India, New Delhi.
- Roques A., Rabitsch W., Rasplus J. Y., Lopez-Vamonde C., Nentwig W., Kenis M. (2009). Alien terrestrial invertebrates of Europe. In: DAISIE handbook of alien species in Europe. Springer, Dordrecht, Pp. 63-79.
- Gairola S., El-Keblawy A. and Mahmoud T. A note on the current distribution of *Nicotiana plumbaginifolia* (Solanaceae) in the United Arab Emirates. *National Academy Science Letters*, 2016; **39**(6): 461-464.
- Randall J. M. and Marinelli J. (1996). Invasive plants: weeds of the global garden. Brooklyn Botanic Garden Club, Handbook Number 149.
- Nayar M.P. In situ conservation of wild flora resources. Bulletin of the Botanical Survey of India, 1989; 29: 319-333.
- 12. Hajra P.K. and Mudgal V. (1997). Plant Diversity Hotspots in India An overview. BSI, Calcutta.
- Kohli R. K., Dogra K. S., Batish D. R. and Singh H. P. Impact of invasive plants on the structure and composition of natural vegetation of northwestern Indian Himalayas. *Weed Technology*, 2004; 18 (sp 1):1296-1300.
- Sharma O. P., Sharma S., Pattabhi V., Mahato S. B. and Sharma P. D. A review of the hepatotoxic plant *Lantana camara*. *Critical Reviews in*

Toxicology, 2007; 37(4): 313-352.

- Nawab N. P. and Yogamoorthi A. Allelopathic effects of aqueous extract of *Lantana camara* L. on seed Germination of black gram *Vigna mungo* L. Environmental Science: *An Indian Journal*, 2016; **12**(11).
- Srivastava S., Dvivedi A. and Shukla R. P. Invasive Alien Species of Terrestrial Vegetation of North-Eastern Uttar Pradesh. *International Journal of Forestry Research*, 2014; Article ID 959875:1-9.
- Gantayet P. K., Adhikary S. P., Lenka K. C. and Padhy B. Allelopathic impact of *Lantana camara* on vegetative growth and yield components of green gram (*Phaseolus radiatus*). *International Journal of Current Microbiology and Applied Sciences*, 2014; 3(7):327-335.
- Bajwa A. A., Chauhan B. S., Farooq M., Shabbir A., Adkins S. W. What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world's worst weeds. *Planta*, 2016; 244(1):39-57.
- Kohli R. K., Batish D. R., Singh H. P. and Dogra K. S. Status, invasiveness and environmental threats of three tropical American invasive weeds (*Parthenium hysterophorus* L., *Ageratum conyzoides* L., *Lantana camara* L.) in India. *Biological Invasions*, 2006; 8(7): 1501-1510
- 20. Rajan L. Growth inhibitor(s) from *Parthenium Hysterophorus* Linn. *Current Science*, 1973; **42**: 729-730.
- Kanchan S. D. Growth inhibitors from *Parthenium* hysterophorus Linn. Current Science, 1975; 44: 358–359.
- 22. Singh, S. P. Allelopathic potential of *Parthenium* hysterophorus L. Journal of Agronomy and Crop Science, 1991; **167** (3): 201-206.
- 23. Kohli R. K. and Rani D. Identification and bioefficacy of soil chemics of *Parthenium*. In Proceedings of the 1st National Symposium on Allelopathy in agroecosystems, Hisar, India, Februaray 1992; (Pp. 196-198)
- 24. HEAR (2017). Alien species in Hawaii. Hawaii Ecosystems at Risk. Honolulu, USA: University of Hawaii. http://www.hear.org/ AlienSpeciesInHawaii/index.html
- 25. Mushtaq W., Quratul-Ain, Siddiqui M. B, Screening of alleopathic activity of the leaves of *Nicotiana plumbaginifolia* Viv. on some selected crops in Aligarh, Uttar Pradesh, India. *International Journal of Photochemistry and Photobiology*, 2018; **2**(1):1-4.
- Devi A. D., Devi O. I., Singh T. C., Singh E. J. A study of aromatic plant species especially in Thoubal district, Manipur, North East India. *International Journal of Scientific and Research*

Publications, 2014; 4: 2250-3153.

- 27. Shahriar M., Chowdhury S. A., Imam M. Z. and Datta B. K. Analgesic and Neuropharmacological Activities of Methanol Extract From the Leaf of *Nicotiana plumbaginifolia* Viv. *Bangladesh Pharmaceutical Journal*, 2015; **18**(2): 85-9.
- Mushtaq W., Quratul-Ain, Siddiqui M. B. and Hakeem K. R. Cytotoxic allelochemicals induce ultrastructural modifications in *Cassia tora* L. and mitotic changes in *Allium cepa* L.: a weed versus weed allelopathy approach. *Protoplasma*, 2019; **256**: 857-871.
- 29. Mushtaq W. and Siddiqui M. B, Allelopathy in Solanaceae plants. *Journal of Plant Protection Research*, 2018; **58**(1):1-7.
- Greuter W. Occurrence details for Ageratum conyzoides. Compositae (pro parte majore). Euro+Med Plantbase the information resource for EuroMediterranean plant diversity 2016 [ed. by Greuter, W. \RaabStraube, E. von].
- BioNET-EAFRINET (2016). Invasive plants key and fact sheets. http://keys.lucidcentral.org/keys/ v3/eafrinet/index.htm
- 32. Stearn W. T. Grisebach's flora of the British west Indian islands: a biographical and bibliographical introduction. *Journal of the Arnold Arboretum*, 1965; **46**(3):243-285.
- Singh H. P., Batish D. R., Pandher J. K. and Kohli R. K. Assessment of allelopathic properties of *Parthenium hysterophorus* residues. *Agriculture, Ecosystems and Environment,* 2003; 95(2): 537-541.
- Nunes da Cunha C. and Junk W. J. Year-toyear changes in water level drive the invasion of *Vochysia divergens* in Pantanal grasslands.

Applied Vegetation Science, 2004; 7: 103-110.

- McGeoch M. A., Butchart S. H. M., Spear D., Marais E., Kleynhans E. J., Symes A., Chanson J. andHoffman M. (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. *Diversity and Distribution*, 16: 95–108.
- Shafroth P. B., Clever J. R., Dudley L., Stuart J. and Taylor J. P. Control of *Tamarix* in the western U.S.-implications for water salvage, wildlife use, and riparian restoration. *Environmental Management*, 2005; 35: 231-246.
- Goodson J. M., Gurnell A. M., Angold P. G. and Morrissey I. P. Evidence for hydrochory and the deposition of viable seeds within winter ûowdeposited sediments: the River Dove, Derbyshire, UK. *River Research and Applications*, 2003; 19: 317-334.
- Schmiedel D. and Tackenberg O. Hydrochory and water induced germination enhance invasion of Fraxinus pennsylvanica. *Forest Ecology and Management*, 2013; 304: 437-443.
- Cuda J., Rumlerov Z., Bruna J., Skalova H. and Pysek P. Floods affect the abundance of invasive *Impatiens glandulifera* and its spread from river corridors. Diversity and Distributions: 2017; 1-13. http://dx.doi.org/10.1111/ddi.12524
- 40. Wheeler G. S., Mc-Kay F., Vitorino M. D., Manrique V., Diaz R. and Overholt W. A. Biological Control of the Invasive Weed *Schinus terebinthifolia* (Brazilian Peppertree): A Review of the Project with an Update on the Proposed Agents. *Southeastern Naturalist*, 2016; **15**: 15-34.