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	 Salt stress is among environmental conditions that severely retards plant growth. 
Scope of this work is the detection of transcription factors that might participate in regulating 
salt-stressed genesin wild barley (Hordeumspontaneum). Expression profiles of important 
types of transcription factors (TFs) were displayed. They includeWRKY and MYB, that 
were regulated under salt stress. WRKY19 and NAC96 are known to induce stress tolerance 
through activation of DREB2A (or Ap2-ERF). NAC96 concordantly upregulated with DREB2A 
gene under salt stress in H. spontaneum, a possible cross talking to compensate the negative 
performance of WRKY19 gene. P5CS, for proline accumulation, is also known to be driven by 
ERF1 and genes encoding these proteins concordantly upregulated in H. spontaneum under 
salt stress supporting NAC96/ERF1/P5CS cross talking towards proline accumulation under 
stress. Genes encoding enzymes participating in the last steps of glucose, sucrose and maltose 
biosyntheses concordantly upregulated with WRKY11 that is also involved in driving genes 
encoding free proline. B-box zinc finger protein 21 (BZF21) concordantly expressed with genes 
encoding catalase and SAUR40 indicating that BZF21 gene might drive expression of the two 
genes under salt stress. Upregulated WRKY41 and WRKY46 under salt stress in wild barley 
are known to exhibit enhanced stomatal closure, reactive oxygen species (ROS) scavenging, 
lateral roots development via regulation of ABA signaling and auxin homeostasis. The latter 
action is governed by GH3.8 gene that was upregulated in wild barley. MYB30 is known for 
being SUMOylated by SIZ1. In the present study, MYB30, MYB44 and MYB3R-2 genes were 
concordantly expressed with SIZ2 gene supporting their crosstalking under salt stress in H. 
spontaneum. Based on the regulation of WRKY19 and MYB30 genes under salt stress in H. 
spontaneum, we suggest that the first is a positive activator, while the second is a negative 
activator of FT gene that drives early flowing in plants. MYB44 that promotes stomatal closure 
under stress can also serve in conferring tolerance to abiotic stresses in wild barley. Several 
other downregulated genes under salt stress, e.g., MYB1, MYB20 and MYB73, were previously 
reported to negatively regulate abiotic stress tolerance in plants. We suggest that WRKY gene 
family participates in salt stress responses in leaves of H. spontaneum following approaches 
different from those of other plants. Regulation of MYB gene family is almost similar to that 
of other plant species under salt stress. In conclusion, the present study addresses some of the 
regulatory frame works driving expression of salt-related genes inH. spontaneum that can be 
utilized in plant, e,g, cereals, breeding programsto improve their salt stress tolerance.
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	 Salt stress is one of the most devastating 
environmental conditions that extremely restrict 
plant growth and yield. For a plant to survive such 

harsh condition, a series of tolerance mechanisms 
can occur to help plant adapt and respond properly 
to this condition1. Earlier reports indicate that 
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expression levels of different stress-related genes 
are regulated by transcription factors (TFs) that 
work as stimulators of individual genes or act as 
master switches driving a battery of genes or a 
whole pathway such as stress signal transduction 
pathways2-8WRKYis among the largest families 
of TFs that play important roles in modulating 
physiological processes in plants under stress 
conditions8-12. Protein encoded by this TFgene 
family is characterized by a 60 amino acids domain 
of highly conserved WRKYGQKheptapeptide at 
the N-terminal and an atypical zinc finger-like motif 
at its C-terminal13, 14. This family contains over 70 
members in Arabidopsis13, 15. 55 in cucumber16, 
119 in maize17, 94 in barley18, and 100 in rice19. 
Encoded proteins of this family are characterized 
by a 60-amino acids domain containing the WRKY 
amino acid sequence at its amino-terminal end and 
a putative zinc finger motif at its carboxy-terminal 
end. Based on number and diversity of WRKY 
domains, WRKY proteins are classified into three 
groups (I, II and III) of which category I proteins 
harbor two domains, while proteins of groups II 
and III harboronly one domain. Groups II and III 
proteins differ in zinc finger structures (C2H2 in 
group II, while C2HC in group III)14, 20. Previous 
study reported a number of 74 WRKY proteins 
in Arabidopsis, while over 100 in rice (Oryza 
sativa)10. WRKYTFs have specificity to bind 
W-box [TTGAC(C/T)] of promoters of their target 
genes, which subsequently wire genetic circuits 
towards downstream biological responses20, 21.
	 WRKYTFs can either negatively or 
positively trigger a certain response under stress 
conditions19. These regulation patterns as well as 
members participating in a given condition can 
changes from a plant to the other. For example, 
WRKY54 and WRKY70 in Arabidopsis negatively 
regulate leaf senescence22. While, WRKY23 
positively enhanced pathogen defense and over 
expression of maize WRKY58 in rice23. and wheat 
WRKY1 and WRKY33 in Arabidopsis positively 
conferred drought and salt tolerance24. WRKYTFs 
also reported to be involved in abiotic stress by 
wiring ABA signaling pathway25. For example, 
Chrysanthemum WRKY1 enhancedabiotic stress 
tolerance, whilecotton WRKY17 overexpressed in 
tobacco reduced tolerance by regulating a number 
of genes in ABA signaling pathway and reactive 
oxygen species (ROS) production. 

	 MYB is also a family of TFs involved in 
response to abiotic stresses in plants26. Of which, 
expression of MYB108 gene in Arabidopsis is 
induced in response to salt stress and participate 
in crosstalking between abiotic and biotic stresses 
via orchestration of signaling pathways of jasmonic 
acid (JA) and gibberellic acid (GA)27, 28. While, 
MYB65 participates in GA signaling in growth 
and flowering processes29. Our work also showed 
that the expression of this gene increased in roots 
in response to both stresses whereas, in leaves up-
regulated only in response to salt stress. Expression 
of genes encoding MYB differs in different tissues 
in response to salt stress as MYB34 in Arabidopsis, 
for example, is normally upregulated in root tissue 
and its expression in leaves increases only in 
response to stress, whereas MYB47 and MYB32 
were common in both tissues28, 30.
	 In the present study, we have demonstrated 
important types of TFs including WRKY and MYB 
that were regulated under salt stress in wild barley 
Hordeumspontaneum. The information recovered 
from this work can be helpful in improving plant 
salt stress tolerance in the future.

Materials and Methods

	 Salt stress experiment was conducted 
on H. spontaneum as previously described31. 
Fourteen-day-old seedlings were treated with salt 
(500mMNaCl) and total RNAs were harvested in 
a replicated experiment from leaves at 0 (control), 
2, 12 and 24 h time point using Trizol (Invitrogen, 
Life Tech, Grand Island, NY, USA). Then, RNAs 
were treated with RNase-free DNase (Promega 
Corporation, Madison, WI, USA) and 1 U/ul 
of RNasin® Plus RNase Inhibitor as described 
(Promega Corporation, Madison, WI, USA). 
Total RNA samples were, then, shipped to Beijing 
Genomics Institute (BGI), Shenzhen, China for 
deep sequencing using illuminaMiseq. Generated 
raw data were retrieved in FASTQ format and 
submitted to the NCBI and experiment received 
accession number of PRJNA227211 (https://www.
ncbi.nlm.nih.gov/ bioproject?LinkName=sra_
bioproject&from_uid=537429). Individual 
accession numbers of raw data of different 
samples are available in NCBI (https://www.ncbi.
nlm.nih.gov/ sra?LinkName=bioproject_sra_
all&from_uid=227211). Raw data was processed as 
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described32 and clean data was subjected to genome-
guided Trinity de novo transcriptome assembly 
(https://github.com/trinityrnaseq/trinityrnaseq/
wiki/Genome-Guided-Trinity-Transcriptome-
Assembly) with Hordeumvulgare genome (https://
plants.ensembl.org/ Hordeum_vulgare/Info/
Index, Taxonomy ID 112509) used as the guide. 
Differential expression and cluster analysis were 
done by EdgeR (version 3.0.0, R version 2.1.5) 
with proper algorism and fold change values of 
e” 2 measured against actin house-keeping gene. 
Annotation of the recovered transcripts was done 
using Blast2GO (http://www.blast2go.org/). 
Subsequent bioinformatics approach was done as 
described33. Predicted CDSs were annotated against 
protein database in order to assign functions of 
transcripts. Protein domains common in TFswere 
identified using HMMER3 software34.
	 Then, RNA-Seq datasets were validated 
via qRT-PCR of four randomly selected genes using 
the Agilent Mx3000P qPCR Systems (Agilent 
technology, USA) as previously described31. 
Transcripts selected from cluster analysis were 
upregulated at 2 and 12 h time points. Primer 
sequences are shown in Table S1. Calculations 

referring to expression levels of each transcript 
were done relative to that under control condition 
and barley actin gene was used as the house-
keeping gene.

Results and Discussion

	 For validating RNA-Seq datasets, 
qRT-PCR was done for four randomly selected 
transcripts encoding transcripts that were either 
upregulated at 2 and 12 h time points, upregulated 
at 2 h time point, or downregulated at 2 and 12 
h time points of salt stress and results aligned 
with RNA-Seq datasets for transcripts used for 
validation (FigureS1).Cluster analysis resulted in 
the recovery of over 10000 differentially expressed 
(DE) transcripts with fold change of e” 2 under salt 
stress including over 600 TFs highlighted in Table 
S2that are separately shown in Table S3. Well-
known TF families for their response to abiotic 
stresses include WRKY and MYB. Genes encoding 
WRKY activated at 2 and 12 h time points under 
salt stress include WRKY2, WRKY11, WRKY41, 
WRKY46, WRKY50 and WRKY71 (Figure 1a). 
Gene encoding WRKY24 was upregulated at 2 h 

Fig. 1. Up- (a), downregulated (b) and up-/downregulated (c) transcripts of WRKY family under salt stress (1 M 
NaCl) across 0, 2, 12 and 24 h time points in leaves of H. spontaneum. Original RNA-Seq data is shown in Table S2



546 Makki, Biosci., Biotech. Res. Asia,  Vol. 17(3), 543-557 (2020)

time point only, while downregulated at 24 h time 
point (Figure 1c). DownregulatedWRKYgenesin 
the present study include WRKY19 and WRKY35 
(Figure 1b). Genes encoding MYB under salt 
stress includeMYB30, MYB44,MYB62, MYB3R-2 
and MYB3R-4, while downregulatedMYBgenes 
includeMYB1, MYB20,MYB73 and MYBS3  
(Figure 2).
	 WRKY2 and WRKY19 were reportedby 
Niuet al. (35)to induce stress tolerance in wheat 
through activation of STZ (salt tolerance zinc 
finger) andDREB2A (dehydration-responsive 
element binding 2A) pathways, respectively. 
Although a large number of zinc finger genes11 
in the present study was regulated in leaves H. 
spontaneum under salt stress (Table S3), STZ 
gene was not regulated. Then, STZ gene cannot 
be used in tracing regulation of WRKY2 gene. 

WRKY19gene was downregulated in leaves of H. 
spontaneumunder salt stress (Figure 1b), thus, no 
activation of DREB2Agene is expected. DREB2A 
is among AP2-ERF (Apetala2/Ethylene responsive 
factor) gene family and a recent report indicated 
that DREB2A is also affected by other TFs, ex., 
NAC96(28). Interestingly, two Ap2-ERFgene 
isoforms and a gene encoding NAC96 were 
upregulated in cluster 1 under salt stress in leaves of 
H. spontaneum(Figure 3 and Table S2) indicating 
that upregulation of Ap2-ERF gene can compensate 
the negative regulation of WRKY19gene in H. 
spontaneum. 
	 Overexpression of WRKY2gene in 
grapevine increased proline under salt stress36. 
Two other recent reports indicated that WRKY2 
in wheat37 and WRKY11 in soybean38 also drive 
genes encoding free proline and soluble sugars 

Fig. 2. Up- (a) and downregulated (b) transcripts of MYB family under salt stress (1 M NaCl) across 0, 2, 12 and 
24 h time points in leaves of H. spontaneum. Original RNA-Seq data is shown in Table S2

Fig. 3. Expression pattern of transcripts encoding two DREB2A (AP2-ERF) isoforms under salt stress (1 M NaCl) 
across 0, 2, 12 and 24 h time points in leaves of H. spontaneum. AP2-ERF = Apetala2/ethylene responsive factor. 
Original RNA-Seq data is shown in Table S2
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under drought stress. Prolineand sugars are known 
as important osmolytesthat neutralize the effects 
of salt and alleviate stress39, 40. Interestingly, 
gene encoding Delta-1-pyrroline-5-carboxylate 
synthase (P5CS) for proline accumulation was 
concordantly upregulated under salt stress with that 
encoding ERF1 (ethylene responsive factor 1)gene, 
otherDREBgene derivative, in cluster 32 (Figure 
4 and Table S2). Then, proline accumulation due 
to the function of P5CSgene in H. spontaneum 
under salt stress canalso be driven by ERF1gene 

that is likely controlled by NAC96, not by either 
WRKY2 or WRKY11. As per expected sugar levels 
under salt stressin H. spontaneum, results indicated 
that genes encoding enzymes participating in 
the last step of glucose (e.g., beta-glucosidase), 
sucrose (e.g., sucrose synthase 6) and maltose 
(e.g., beta-amylase 8) biosynthesis concordantly 
upregulated with WRKY2 in clusters1 and 5, 
whileWRKY11 and MYB3R-2 in cluster 6 (Table 
S2) under salt stress (Figure 5).Accordingly, we 
speculate that WRKY 2 and WRKY11 are involved 

Fig. 4. Expression pattern of transcripts of DREB2A (ERF1) and P5CS concordantly upregulated under salt stress (1 
M NaCl) across 0, 2, 12 and 24 h time points in leaves of H. spontaneum. P5CS2 = Delta-1-pyrroline-5-carboxylate 
synthase 2, ERF1 = ethylene responsive factor 1. Original RNA-Seq data is shown in Table S2.

Fig. 5. Expression pattern of transcripts encoding SS6, BA8, BG25, WRKY2, WRKY11 and MYB3R-2 concordantly 
upregulated under salt stress (1 M NaCl) across 0, 2, 12 and 24 h time points in leaves of H. spontaneum. SS6 = 
Sucrose synthase 6, BA8 = Beta-amylase 8, BG25 = Beta-glucosidase 25, MYB3R-2  = myeloblastosis3R-2. Original 
RNA-Seq data is shown in Table S2
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Fig. 6. Expression pattern of transcripts encoding SOD downregulated under salt stress (1 M NaCl) across 0, 2, 12 
and 24 h time points in leaves of H. spontaneum. SOD = superoxide dismutase. Original RNA-Seq data is shown 
in Table S2

Fig. 7. Expression pattern of transcripts encoding isoforms of catalase concordantly upregulated with BZF21 and 
SAUR genes, while not with WRKY11 gene isoforms under salt stress (1 M NaCl) across 0, 2, 12 and 24 h time 
points in leaves of H. spontaneum. BZF21 = B-box zinc finger protein 21, SAUR40 = small auxin-up RNA. Original 
RNA-Seq data is shown in Table S2

in driving genes encodingsoluble sugars as two 
different mechanisms of salt stress tolerance in H. 
spontaneum.
	 Recently, WRKY11 was also proven to 
induce elevated levels of superoxide dismutase 
(SOD) and catalase in soybean38. In the present 
study, upregulated WRKY11gene does not seem 
to concordantly express with SOD regulatedgene 
isoforms in H. spontaneum, whereSOD gene 
isoforms were downregulated (Figure 6 and Table 
S2) as shown in clusters 2 and 27 and no other 
TFcan likely complementWRKY11 effect whose 
upregulation pattern of its three isoforms inH. 

spontaneum was different (cluster 1). Although 
both genes are upregulated, WRKY11gene does 
not either concordantly express with isoforms of 
gene encoding catalase(existing in cluster 23), 
but gene encoding another TF namely B-box zinc 
finger protein 21 (BZF21) concordantly expressed 
with the two isoforms of gene encoding catalase, 
thus, possibly drive expression of this gene in H. 
spontaneuminstead of WRKY11 (Figure 7 and 
Table S2). B-box zinc finger proteins were reported 
to enhance salt and drought stresses tolerance in 
Arabidopsis (Liu et al., 2019). Interestingly, gene 
encoding SAUR40also concordantly expressedwith 
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Fig. 8. Expression pattern of transcripts encoding isoforms of FT concordantly upregulated with two isoforms of 
WRKY19 genes under salt stress (1 M NaCl) across 0, 2, 12 and 24 h time points in leaves of H. spontaneum. FT 
= FLOWERING LOCUS T. Original RNA-Seq data is shown in Table S2

Fig. 9. Expression pattern of transcript encoding GH3.8 upregulated under salt stress (1 M NaCl) across 0, 2, 12 
and 24 h time points in leaves of H. spontaneum. GH3.8 = GRETCHEN HAGEN 3.8. Original RNA-Seq data is 
shown in Table S2

BZF21 and catalase genes in cluster 23 (Figure 7 
and Table S2).SAUR40gene is among a family 
acting as a regulator of cell elongation and plant 
growth performance41 and a stimulator of shoot 
elongation due to auxin signaling42. Thus, we 
speculate that BZF21 might drive expression of 
both catalase and SAUR40 genes as genes encoding 
the three metabolites are concordantly expressed 
(Figure 7). 

	 P a r t i c i p a t i o n  o f  t h e  t w o  T F s , 
namelyWRKY24 and WRKY71, as responsive 
elements under salt stress was argued in rice43. 
However, expression patterns of isoforms of 
these two TFs seem to be controversial (Figure 1) 
as gene encoding the first was upregulated at 2 h 
time point and downregulated at 24 h time point, 
while gene encoding the second was upregulated 
at 2 and 12 time points. Xie et al19 indicated that 



550 Makki, Biosci., Biotech. Res. Asia,  Vol. 17(3), 543-557 (2020)

Fig. 10. Expression pattern of transcripts encoding SIZ2 concordantly upregulated with two isoforms of MYB30 
gene as well as MYB3R-2 and MYB44 under salt stress (1 M NaCl) across 0, 2, 12 and 24 h time points in leaves 
of H. spontaneum. Original RNA-Seq data is shown in Table S2

Fig. 11. Expression pattern of transcripts encoding MYB30 and the concordantly downregulated isoforms of WRKY19 
and FT genes under salt stress (1 M NaCl) across 0, 2, 12 and 24 h time points in leaves of H. spontaneum. Original 
RNA-Seq data is shown in Table S2

WRKY24gene is induced by ABA signaling, 
while Basu and Roychoudhury43 indicated that 
ABA signaling induces higher expression of 
WRKY71gene and many other TFs. Interestingly, 
the authors indicated thatWRKY24gene showed 
expression even lower than that of the control 
untreated samples under salt stress. WRKY71 
was recently reported to antagonistically act 
against both salt-delayed flowering and escaping 
salt stress in Arabidopsis through the induction of 
gene encoding FLOWERING LOCUS T (FT)44. 

Surprisingly, two isoforms of the latter gene in 
clusters 4 and 8 seem concordantly downregulated 
with gene encoding WRKY19of cluster 4 rather 
than with gene encoding WRKY71of cluster 
21 (Figure 8 and Table S2). We cannot jump to 
conclusions on the relationship between WRKY19 
and FT genes unless an experiment to detect the 
consequences of WRKY19 gene being knocked out 
in Arabidopsis model.
	 Aligning with the results of the present 
study, WRKY41and WRKY46 were reported to 
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Fig. 12. Expression pattern of transcripts encoding MYB44 concordantly upregulated with genes encoding two 
isoforms of serine/threonine protein phosphatase PP1 gene as well as with gene encoding protein phosphatase 2C 
under salt stress (1 M NaCl) across 0, 2, 12 and 24 h time points in leaves of H. spontaneum. Original RNA-Seq 
data is shown in Table S2

Fig. 13. Expression pattern of transcript encoding MYB62 that is expressed oppositely to gene encoding gibberellin-
regulated protein under salt stress (1 M NaCl) across 0, 2, 12 and 24 h time points in leaves of H. spontaneum. 
Original RNA-Seq data is shown in Table S2

positively relateto salt stress tolerance in tobacco45. 
Genes encoding the two TFs were upregulated 
under salt stress in H. spontaneum as shown in 
clusters 11 and 1, respectively (Figure 1 and Table 
S2). Overexpressing the cotton WRKY41gene 
in tobacco exhibited enhanced stomatal closure 
and reactive oxygen species (ROS) scavenging 
when plants were exposed to osmotic stress45. 
WRKY46acts in Arabidopsis in developinglateral 
roots under osmotic/salt stress via regulation 

of ABA signaling and auxin homeostasis46. 
Auxin homeostasis is known to be regulated by 
GRETCHEN HAGEN3 or GH3 gene family in 
“Plant hormone signal transduction” pathway42. In 
the present study, GH3.8gene was upregulated in 
cluster 17 with no exact TF concordantly expressed 
with it (Figure 9 and Table S2). No conclusive 
information on the function of WRKY50 (cluster 1) 
is available except that it acts as a positive regulator 
in the salicylic acid (SA) signaling pathway and 
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Fig. 14. Expression pattern of transcript encoding MYBS3 that concordantly downregulated with gene encoding 
alpha-amylase under salt stress (1 M NaCl) across 0, 2, 12 and 24 h time points in leaves of H. spontaneum. Original 
RNA-Seq data is shown in Table S2

probably ABA signaling pathway in Arabidopsis, 
while a negative regulator in jasmonic acid (JA) 
signaling47, 48.Very little is known about the mode 
of action of WRKY35 except that its expression 
participates in conferring salt stress tolerance in 
zoysia grass49.We conclude that WRKY gene family 
participates in salt stress responses in leaves of H. 
spontaneum in ways different from those in other 
plant species.
	 Expression of five MYB genes,namely 
MYB30, MYB44, MYB62, MYB3R-2 and MYB3R-4, 
was proven to be increased under salt stress 
in leaves of H. spontaneum (Figure 2a), while 
expression of four, namely MYB1, MYB20, 
MYB73 and MYBS3, wasdecreased (Figure 2b). 
MYB30, anR2R3 MYBTF, was studied by Gong 
et al50 and results indicated that expression in 
the perennial wall-rocket (Diplotaxistenuifolia 
L.) increased under salt stress up to 4 h time 
point, while gradually decreased up to 24 h 
time point in perfect alignment with results of 
the present study with regard to regulation of 
gene encoding this TF. MYB30 was proven to 
be SUMOylated by SIZ1(50, 51). SUMOylation 
represents a post-translational regulation involved 
in various cellular processes including response to 
stresses52. SmallUbiquitin-likeModifier (SUMO) 
proteins, like SIZ1 and SIZ2,represent a family 
of smallproteinscovalentlyattached to a certain 
protein, while detached from others to modify 
target protein’s(e.g., MYB30) function. In the 

present study, two isoforms of MYB30gene as 
well as MYB44 and MYB3R-2 genes concordantly 
expressed with SIZ2gene in cluster 6 under salt 
stress in H. spontaneum(Figure 10and Table S2). 
MYB30also accelerates flowering both in long and 
short days. Early flowering is mediated by elevated 
expression ofFLOWERING LOCUS T(FT)gene 
that is mainly activated byCONSTANS (CO). 
However, MYB30can also drive expression of 
FTgene53, a phenomenon that we speculated for 
WRKY19gene under salt stress in H. spontaneum. 
The major difference between the possible 
regulation of WRKY19 orMYB30gene is that the 
first is a positive activator, while the second is a 
negative activator of FT gene. This controversial 
speculated regulation ofWRKY19 and MYB30genes 
under salt stress in H. spontaneum is shown in 
Figure11.MYB30was alsoreported to participate 
in ABA signaling response51, in accumulation 
of very-long-chain fatty acids such as waxes, 
phospholipids, and complex sphingolipids54, 
and in promoting the expression of a subset of 
brassinosteroids (BRs) target genes55, 56. No results 
were detected on the regulation of genes encoding 
any of the above-mentioned compounds under salt 
stress in H. spontaneum.
	 Interestingly, MYB44 was proven to 
be a negative regulator of ABA signaling and 
abiotic stresses in Arabidopsis 57, while positively 
increased sensitivity of seed germination to ABA58. 
The latter authors indicated that phosphorylation of 
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Fig. 15. Networking of transcription factor regulated in H. spontaneum under salt stress and their known contribution 
to salt stress tolerance in plants. Blue circles refer to transcription factor genes upregulated under salt stress, while 
orange circles refer to transcription factor genes downregulated under salt stress. WRKY24 is upregulated at 2 h time 
point, while downregulated at 24 h time point of salt stress. Pink boxes refer to regulated genes that are concordantly 
expressed with transcription factors, while grey boxes refer to biological processes that can lead to salt stress tolerance. 
STZ = salt tolerance zinc finger, FT = FLOWERING LOCUS T, CO = CONSTANS, SOD = superoxide dismutase, 
SIZ2 = SUMO E3 ligase (SAP and MIZ1 domain-containing ligase 2), SAUR40 = small auxin-up RNA, PP1 = 
protein phosphatase 1, PP2C = serine/threonine protein phosphatases 2C, GH3.8 = GRETCHEN HAGEN3, P5CS 
= Delta-1-pyrroline-5-carboxylate synthase, DREB2A (AP2-ERF) = dehydration-responsive element binding 2A 
(Apetala2/Ethylene responsive factor)

MYB44 by MAPK is mandatory for its function. 
Nonetheless, Jung et al59 indicated that MYB44 
promotes stomatal closure, a characteristic 
shared with WRKY41 that consequently serves 
in conferring tolerance to abiotic stresses in 
Arabidopsis.Tolerance is conferred for plants 
overexpressing MYB44 gene because they exhibit 
a reduced rate of water loss, reduced rate of genes 
encoding serine/threonine protein phosphatases 2C 
(PP2Cs), then enhanced tolerance to drought and 
salt stress. Nonetheless, genes encoding MYB44, 
protein phosphatase 2C and two isoforms of 
protein phosphatase 1 (PP1)in the present study are 
concordantly expressed in cluster 6 (Figure 12 and 
Table S2). Explanation of concordant expression of 
MYB44 and genes encoding the two phosphatases 

might be that MYB44 was upregulated only at 
2 h time point only, while the other genes were 
upregulated also at 12 h time point. This indicates 
that negative regulation of MYB44 might take place 
only at 12 h time point.
	 Devaiah et al60 stated that MYB62is 
actingtowards suppression of several phosphate 
(Pi) starvation-induced genes and suppression 
of gibberellic acid (GA) biosynthesis under 
nutrient stress. Authors claimed that cross-talking 
between Pi homeostasis and GA is an adaptive 
mechanism underabiotic stresses. Therefore, it is 
logic that MYB62 negatively regulate expression 
of gibberellin-regulated protein under salt stress 
in H. spontaneum as previously described 60. Inthe 
present study, MYB62 exists in cluster 1 whose 
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expression of transcripts indicated upregulation 
at 2 and 12 h time points, while one gibberellin-
regulated protein exists in cluster 4 whose 
expression of transcripts indicated downregulation 
at 2 and 12 h time points (Figure 13 and Table 
S2). As per MYB3R-4, Haga et al61 indicated 
its participation in pleiotropic development and 
regulation of multiple G2/M-specific genes in 
Arabidopsis. None of the genes involved in the 
latter processes were regulated in H. spontaneum 
under salt stress.
	 MYB1, MYB20, MYB73 and MYBS3genes 
were shown to be downregulated under salt stress 
in H. spontaneum (Figure 2b). These TFs were 
previously reported to negatively regulate abiotic 
stress tolerance in plants except forMYBS3 
that was reported for its positive role in abiotic 
stresses, particularly cold stress tolerance in rice 
via mediation of a-amylase gene expression62. 
In H. spontaneum, MYBS3 seems concordantly 
expressed with a-amylase gene although the first 
exists in cluster 4, while the second exists in 
cluster 2 (Figure 14 and Table S2). Wang et al63 
claimed that MYB1 negatively regulates seed 
germination under saline conditions in Arabidopsis 
by regulating the levels of the stress hormone 
abscisic acid (ABA). Similar conclusions were 
reached by Gao et al47 in their work on MYB20 in 
Arabidopsis with regard to the negative regulation 
of ABA under drought stress. Loss-of-function 
experiment of MYB73gene resulted in drought or/
and salt tolerance due to its negative regulation of 
SOS1 (salt overly sensitive 1) and SOS3 genes(64, 
65). No SOS genes are regulated under salt stress 
in H. spontaneum. 
	 Summary of the overall molecular 
networking involving transcription factors 
and their concordantly expressed genes along 
with downstream biological processes towards 
conferring salt stress tolerance in H. spontaneum 
under salt stress is shown in Figure 15. 

Conclusion

	 In conclusion, we suggest that WRKY 
gene family participates in salt stress responses 
in leaves of H. spontaneum of which some of 
them follow different approaches, in terms of 
their regulation under salt stress as well as the 
downstream responsive genes, from those of other 

plant species. Regulation of MYB gene family in H. 
spontaneumseems similar, to a large extent, to that 
of other plant species under salt stress. The present 
study addressed some of the molecular mechanisms 
by which H. spontaneum follows under salt stress 
in order to stand severe salt stress. One of the 
important avenue towards improving salt stress 
tolerance is understanding the regulatory elements, 
e.g. transcription factors, that drive important salt-
related genes. This information might be useful in 
subsequent breeding programs in cultivated barley 
and other cereal crops.
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