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	 Our target is to evaluate recent literature on chitinase production from different 
sources via solid-state fermentation and to analyze several strategies to improve chitinase 
production via solid-state fermentation. Plant pathogen biocontrol, sequential transformation 
of chitin into bioactive molecules such as chito-oligosaccharides and N-acetylglucosamine, 
protoplast synthesis from filamentous fungi, and single-cell protein production are some of 
the applications for chitinase. Despite their enormous biological importance, chitinases have 
received little commercial importance due to the smaller percentage of microbes with high 
efficiencies, the enzymes' decreased activity and consistency, and the cost of production. Solid-
state fermentation (SSF) is less expensive, requires fewer vessels, uses less water, requires 
fewer wastewater treatments, produces a greater product yield, has a lower risk of bacterial 
contamination, and requires less energy expenditure. Despite its higher productivity and lower 
cost, the SSF technique is now mostly limited to lab scales. Furthermore, the crude SSF products 
can be used as an enzyme source for biotransformation. There are many findings on different 
microorganisms that produce chitinase by SSF. So it is very critical to isolate new organisms for 
such production. So we assessed the traditional approach to medium optimization, which focuses 
on changing one factor at a time while leaving the others constant, and statistical optimization 
techniques such as response surface methodology (RSM), artificial neural networks (ANNs), 
and genetic algorithms (GA).

Keywords: Chitin; Chitinase; Optimization; Substrate; Response Surface 
Methodology; Solid state fermentation.

Chitinase 
	 Chitin is a structural element found in 
mollusks, crustaceans, algae  and fungi.1 Chitin is 
the 2nd most prevalent biopolymer in nature, next 
to cellulose 2. Chitinase (E.C. 3.2.1.14, Poly 1, 
4-N-acetyl D-glucosaminide glucanohydrolase) 
is a glycosidase enzyme that specifically degrades 
chitin. The cleaving site for chitinase is the bond 
between CI and C4 of two consecutive N-acetyl 

glucosamine monomers2. Chitinases occur in 
microorganisms, plants and animals. Chitinolytic 
microorganisms are abundant in nature and are 
ideal producers of chitinase because of their 
low cost of production and the accessibility 
of raw materials for their cultivation. Bacteria 
like Bacillus sp. BG-11, Bacillus laterosporous 
MML2270 and Paenibacillus illinoisensis 3- 5, 
while Myrothecium verrucaria 6 and Trichoderma 
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sp. 7 were found as main sources for chitinase in 
fungi. Many prospective applications of chitinase 
include biocontrol entities for fungal pathogens 
5, 6, separation of fungal protoplasts 8, 9, mosquito 
control by degrading insect cuticle, which contains 
chitin as an essential component 10, production 
of SCP 11, and synthesis of oligosaccharides and 
N-acetyl glucosamine 12. Because of their extensive 
applications in biocontrol, waste management, 
medicine, and biotechnology, chitinase enzymes 
are classified as enzymes of rising interest. 
Although chitinase was isolated and characterized 
from different sources, it is still necessary to search 
for new sources of chitinase with higher economic 
values and improved properties to broaden their 
utility. The culture conditions have a significant 
impact on the growth of microorganisms, the 
by-products of their metabolism, and the cost of 
production. The classic one-variable-at-a-time 
strategy was initially employed to optimise the 
process parameters due to its simplicity and 
ease. The loss of the interactive effects between 
different parameters, the time and number of trials 
needed, and other disadvantages of this method 
could increase production costs. In fermentation 
technology, statistical models have been employed 
to overcome these limitations.
Isolation of chitinolytic microorganisms 
	 Chitinolytic organisms are usually 
isolated from coastal soil enriched with crab 
shells 13, agricultural fields 14, degraded stalk of 
mushroom 15, intestine of the Patagonian sea lion 
16, kimchi juice 17, lily plant 18, marine environment 
19 and gut of red palm weevil 20. Substrate 
Phydrolysis, pathogen inhibition, biochemical 
assays of enzymes, and particular PCR techniques 
to show the existence of the concerned genes can 
be used to isolate chitinolytic microbes.
Chitinase production by solid state fermentation 
(SSF)
	 Due to high production costs where 
culture media can account for up to 40% of 
overall production costs, commercial chitinase is 
still used on a limited scale. In the past few years, 
there has been a great deal of interest in enhancing 
chitinase production by employing fermentation 
techniques. Microbial chitinase was produced 
using submerged fermentation (SmF) 21-24 and 
solid substrate fermentation (SSF). Because it uses 
readily available agro-industrial residues such as 

wheat bran, rice husk, and sugar cane bagasse, 
SSF is the best option for cost-effective enzyme 
synthesis. The availability and cost of substrate 
are the most important criteria in choosing a 
substrate for enzyme synthesis in SSF. The solid 
substrate provides crucial nutrients to encourage 
microbial growth while also providing support for 
the microorganisms 25. SSF is less expensive and 
more closely resembles the natural environment 
of most microorganisms (mainly fungi and mold). 
It also takes less energy for sterilisation (due to 
decreased water activity). It is less vulnerable to 
bacterial contamination and substrate inhibition, 
allowing for higher end product concentration 
levels and a multitude of environmental benefits, 
such as creating less effluent26-28. Although 
challenges with substrate sterilization, temperature 
and pH control, culture purity maintenance, and 
process time are encountered, SSF benefits from 
the relative ease of process operations29. Under 
SSF, the microorganisms that generate chitinase 
are listed in Table 1.
Optimization of process parameters
Traditional approach
Effect of medium component on chitinase 
production 
	 Extracellular chitinase production is 
determined by a multitude of physical parameters 
such as pH, aeration, temperature, and components 
of media such as carbon sources, nitrogen 
sources, and other micronutrients. Chitinous 
substances such as prawn waste, commercial 
chitin, or colloidal chitin were revealed as the 
principal carbon, nitrogen, and energy sources 
in the chitinase production process. As per Felse 
and Panda, shrimp shell  waste contains 21.4% 
chitin, 40% calcium carbonate, 27.9% protein, 
20% moisture and 6% ash38. It also contains a 
lot of feeding enhancers (peptides, beatine, and 
polynucleotide compounds) that may help to 
improve nutritional benefit. However, Yesim 
(2000) made the argument that shellfish waste 
materials may be insufficient in many essential 
components, such as amino acids, which may 
have a substantial impact on microbial growth39. 
Enterobacter sp. NRG4 40, Fusarium oxysporum 41, 
used chitin and wheat bran as substrate to produce 
chitinase in solid-state fermentation, while K. 
gibsonii Mb126 31 and B. thuringiensis R 176  34 
used shrimp shell waste. Chitin (1–1.5%) and ball 
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Fig. 1. Optimization of Chitinase production under 
solid state fermentation

Fig. 2. Effect of inoculums size on chitinase 
production by K. gibsonii Mb126 31

milled chitin 33,34 are activators of the chitinase 
enzyme, which is produced by microorganisms. 
Yeast extract has been reported as the ideal organic 
N2 source for T. harzianum TUBF 781 30, while B. 
thuringiensis R 176 used ammonium sulphate 34 
and T. koningiopsis UFSMQ40 used corn steep 
liquor in the chitinase production process35.
Incubation period
	 The time period of incubation has a 
significant influence on chitinase production, 
as it increases to a certain maximum level after 
a time period and then decreases by further 
incubation. Nutrient depletion in the fermentation 
medium could be the biggest factor in the drop 
in production. It could also be the result of the 
medium’s creating inhibitory products, which 
lead to the down regulation of the enzymatic 
secretory framework or the enzyme’s own collapse. 
Penicillium aculeatum, produced maximum 
chitinase at 72 h 42. T. harzianum TUBF 781 30, O. 
xanthineolytica NCIM 2839 32 and T. koningiopsis 
UFSMQ40 35 produced highest chitinase after 96 h 
of fermentation, and S. champavatii AZ-1 required 
168 hours of incubation to produce maximal 
chitinase33. Chitinase production reached maximum 
on the 6th day in B. felina RD 101 36, whereas it 
peaked on the 14th day in B. thuringiensis R 176 
34.

Inoculum size
	 The period and amount of chitinase 
production are also influenced by the nature of the 
inoculum that has been used. The concentration 
of the inoculum determines the production of 
total biomass on the solid medium. A higher 
spore count in the inoculum would result in faster 
growth and biomass conversion. Moreover, due 
to nutrient competition, the organism’s metabolic 
activity decreases after a certain point. There is a 
compromise between proliferating biomass and 
nutrient availability that supports production of 
enzymes with the optimal inoculum size. The 
maximal chitinase production (1.26 U/gds) was 
noted when an inoculum size of 2 ml (4x107 
spores) was used 30. The optimum inoculum size 
for chitinase production by K. gibsonii Mb126 was 
3x108 CFU/mL 31.
pH and Temperature
	 The pH and temperature of incubation are 
important criteria in chitinase production. In the 
case of SSF, the commonly used substrates being 
agro-residues with very good buffering capacity, 
medium pH adjustment is not required 25. The 
optimal pH was 8 for K. gibsonii Mb126 31, 7.0 for 
B. thuringiensis R 176 34 and C. violaceum 37, and 
pH 5 for B. felina RD 10136. Chitinase production 
generally highest at temperatures ranging from 25 
to 40 °C (Table 1). An exception to this was O. 
xanthineolytica NCIM 2839, which had a 45 °C 
optimal temperature for chitinase synthesis32.
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Fig. 3. Response surface plot of the factorial design 
for the influence of the independent variable time 

of growth and humidity on chitinase production by 
M. anisopliae IBCB 167 under SSF using silkworm 

chrysalis as substrate 54

Fig. 4. Artificial Neural Network with input, output and hidden layers applied for optimization of chitinase 
production65

Particle size
	 An optimal particle size must be 
established to balance the adsorbent’s surface area 
of contact and inter-particle distance for effective 
growth, mass transfer, and gaseous exchange. 
Suresh and Chandrasekaran optimised the particle 
size to 425-600 nm 43, and Paul et al., 2018 31 used 
prawn shell powder with a 0.6 mm size for the best 
chitinase output.
Moisture content 
	 Moisture optimization would be employed 
to control SSF’s chitinase production as well as 
regulate and adjust the microorganism’s metabolic 
processes. Increased moisture results in lower 
porosity, changes in the particle structure of the 
substrate, and a reduction in oxygen transport. 

Lowering the moisture level results in increased 
water tension, reduced swelling, and decreased 
nutrient solubility of the solid substrate 44. The 
majority of chitinase production necessitates a 
moisture level of 60-80 percent. Thus, moisture 
content of 60% was found to be optimal for chitinase 
synthesis by the organism O. xanthineolytica 
NCIM 2839 in SSF 32, 75% for K. gibsonii Mb126 
31, and 80% for Enterobacter sp. NRG4 40.
Statistical optimization
Response Surface Methodology 
	 The traditional approach to medium 
optimization means altering one factor at a time 
while retaining others constant. However, because 
it does not consider the cumulative effect of all 
factors, it is time-consuming and costly, and it 
frequently fails to ensure the sampling of optimal 
conditions45. Yet another solution to tackle this 
issue is to use a successive experimental conceptual 
framework. Box and Wilson first established 
response surface methodology (RSM) in 1951, 
and it has since been successfully used in the 
domains of biological sciences. The RSM method 
creates a computational formula that precisely 
captures the whole process by evaluating the 
influence of numerous variables or factors, either 
separately or in combination, on it. Full factorial 
designs, for example, provide more comprehensive 
information, but they necessitate a huge number 
of tests (Lk, where k is the factor number and L is 
the level number for each variable), making them 
unsuitable for studying a lot of variables. As a 
two-level fractional factorial screening design, the 
Plackett-Burman design (PBD) is especially useful 
for determining the significant effects of k variables 
in only k + 1 tests by a linear model. However, the 
interplay of parameters is not taken into account 
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in this strategy. PBD variables could be optimised 
using statistical and mathematical optimization 
methods such as Response Surface Methodology 
(RSM)46, 47. This empirical method allows us 
to assess the relationship among variables and 
predict the response through an efficient design of 
experiments. In order to offer the most information 
on the effects of the experimental variables and 
the overall experimental error in the fewest runs 
possible, a central composite design (CCD) is 
highly useful. A small number of investigations 
are utilised to determine the relevance of essential 
elements using the well-known and regularly used 
statistical technique known as CCD. This design 
has certain star or axial points that are distributed 
radially and have an identical spacing in order to 
fit the quadratic polynomials.
	 Optimisation of bioprocesses using 
statistical approaches was also used to maximise 
chitinase production. Ghanem et al. used PBD and 
Box Behnken Design (BBD) to increase chitinase 
production of Aspergillus terreus by 1.81 fold 48. 
By using CCD 49, Basidiobolus ranarum produced 
7.71 times more chitinase. A comparable study 
indicated a 1.1-fold increment in enzymatic 
activity for chitinase synthesis from the shell of 
Parapeneopsis hardwickii (spear shrimp) via solid-
state fermentation50. The interplay of factors in the 
microbial degradation of shrimp bio-waste and 
simultaneous chitinase and GlcNAc synthesis by 
Vibrio sp. CFR173 M were explored by statistical 
methods. Statistical optimization increased 
chitinase yield by twofold and GlcNAc output by 
nine-fold51. Table 2 lists the microorganisms used 
to produce chitinase under SSF using statistical 
methods. 
Artificial neural networks (ANNs)
	 ANNs can indeed be utilised for parameter 
optimization operations in various academic 
fields. ANN has numerous advantages, including 
the capacity to use noisy data and fine-tune 
incomplete and highly non-linear behaviours57-59. 
Aside from the numerous advantages of ANN, the 
emergence of deep learning will result in more 
reliable information60. Artificial neural networks 
(ANNs) have been successfully used in system 
design, modelling, prediction, optimization, and 
control because of their ability to acquire, filter 
noisy impulses, and extrapolate knowledge during 
the training process. The application of ANN 

increases the yield of several enzymes including 
galactosidase 61, L-asparaginase 62, protease 63, 
and-amylase 64. Ismail et al., 2019 compared deep 
artificial neural networks (DANN) and RSM to 
find the optimised parameters for exochitinase 
synthesis under SSF56 . They found that using deep 
artificial neural networks, measurable enzyme 
production increased by roughly 8.5 folds, from 3.4 
to 28.931U/gds, with a coefficient of determination 
(R2) value of 0.996 compared to 0.76 utilising 
RSM. DANNs have been shown to be more reliable 
than response surface methodologies in predicting 
the activity of enzymes.
	 The ANN can be combined with a genetic 
algorithm (GA) to optimise the media for enhanced 
fermentation. The genetic algorithm (GA), which 
mimics the process of mutation, is based on the 
“survival of the fittest” theory. In order to forecast 
the conditions under which the targeted variable 
(response) would reach its maximum benefit, 
it is employed to tackle numerous optimization 
challenges.
	 Suryawanshi et al. compared three 
different statistical designs for chitinase synthesis 
by Thermomyces lanuginosus MTCC 9331; RSM, 
ANN, and genetic algorithm (GA) 65. The expected 
values of ANN produced more chitinase activity, 
102.24 U/L, than the RSM predicted values, which 
produced 88.38 U/L. The expected production of 
chitinase was closer to the observational reality at 
these concentrations. As per the validation tests, 
the maximum level of chitinase by ANN prediction 
equates to experimental analysis. In terms of 
optimization results, a comparative analysis of 
three distinct statistical designs indicated that ANN 
outshines the GA and RSM studies.

Conclusion 

	 In-depth study is being carried out in order 
to tap into hitherto untapped SSF sources. In SSF, 
bioreactor modelling and careful manipulation of 
physical-chemical parameters can result in a higher 
chitinase production. The majority of the research 
comprise on strain separation, operating parameter 
optimization, and simple reactor design. The main 
issue is that a simple, efficient, and automated 
SSF fermenter is still required. Despite enormous 
biotechnological potential, chitinase have received 
little industrial attention due to the limited number 
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of microorganisms with high efficiency, poor 
activity and stability and high manufacturing 
costs of chitinase. Because of the widespread use 
of chitinase in a variety of industries, additional 
research is needed.
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