Cytological Study of Family Aeshnidae (Odonata: Anisoptera) From India: A Review

Dalveer Singh Somal and Gurinder Kaur Walia*

Department of Zoology and Environmental Sciences, Punjabi University, Patiala - 147002, Punjab, India.

http://dx.doi.org/10.13005/bbra/3035

(Received: 23 November 2022; accepted: 17 December 2022)

Cytological review of 59 aeshnid species and cytogenetic investigations on Anax ephippiger, Anax immaculifrons, Anax indicus, Anax nigrofasciatus nigrolineatus, Anax parthenope, Gynacantha subinterrupta of the family Aeshnidae by carbol fuchsin staining and C - banding have been under taken. All the species posses 2n = 27m with X0 - XX sex determination except Anax ephippiger with 2n = 14 + neo XY, resulted by the 13 simultaneous fusions among the autosomes and between autosome and sex chromosome. The structure and behaviour of chromosomes, variation in size of m chromosomes and X chromosome and distribution of C - heterochromatin have been studied and compared among the species. C - bands are mostly present at the terminal regions of autosomal bivalents, while Anax ephippiger and Anax parthenope also possess C - bands at the interstitial and sub-terminal regions of the bivalents. Moreover, sex chromosome and m bivalent show variation in distribution of C-heterochromatin in the species. Out of these, chromosome complement of Anax indicus Lieftinck, 1942 and C - banding on Anax ephippiger and Anax indicus have been investigated for the first time. List of cytologically studied species of family Aeshnidae has been updated to 60 species.

Keywords: Anisoptera; Aeshnidae; Chromosome complement; C - heterochromatin; Micro chromosomes (m); Sex determination.

Family Aeshnidae (Anisoptera) includes large and vigorous dragonflies known as hawkers or darners or aeshnids. Aeshnids (Greek: 'aeschna' means 'ugly') are homogeneous in shape and their markings are nonmetallic with variable colors. Taxonomically, family Aeshnidae includes 54 genera, 480 species all over world, while 13 genera representing 49 species are available in India (Subramanian and Babu, 2017). Cytogenetic data pertaining to 59 species under the genera Aeshna, Anaciaeschna, Anax, Andaeschna, Austroaeschna, Basiaeschna, Boyeria, Caliaeschna, Castoraeschna, Cephalaeschna, Coryphaeschna, Gynacantha, Gynacanthaeschna, Oplonaeschna, Planaeschna, Remartinia, Rhionaeschna and Staurophlebia have been reviewed which also includes 11 species from India (Table 2). Presently, cytogenetic investigations on Anax ephippiger, Anax immaculifrons, Anax indicus, Anax nigrofasciatus nigrolineatus, Anax parthenope and Gynacantha subinterrupta by carbol fuchsin staining and C - banding have been attempted. All the species posses 2n = 27m with X0 - XX sex determination except Anax ephippiger with 2n =14 + neo XY sex determination. Distribution of C heterochromatin has been observed and compared

*Corresponding author E-mail: gurinderkaur_walia@yahoo.co.in

This is an ⁽²⁾ Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Published by Oriental Scientific Publishing Company © 2022

among the species. Chromosome complement of *Anax indicus* (Lieftinck, 1942) and C - banding on *Anax ephippiger* (Burmeister, 1839) and *Anax indicus* (Lieftinck, 1942) has been analysed for the first time. List of cytologically studied species of family Aeshnidae has been updated to 60 species.

MATERIALS AND METHODS

Male specimens of Anax ephippiger, Anax immaculifrons, Anax indicus, Anax nigrofasciatus nigrolineatus, Anax parthenope and Gynacantha subinterrupta were captured from different localities from India (Table 1). Alive specimens were dissected in 0.67 % saline solution (Sodium chloride in distilled water) in the field and testes

Fig. 1. Anax ephippiger Normal complement 1a. Diakinesis, C - banding 1b Diplotene. Anax immaculifrons Normal complement 1c. Diakinesis, C - banding 1d Metaphase - I. Anax indicus Normal complement 1e. Diakinesis, C - banding 1f. Diakinesis. Anax nigrofasciatus nigrolineatus Normal complement 1g. Diakinesis, C - banding 1h Diakinesis. Arrows show the neo XY, X chromosome and m bivalent. Arrowhead shows C - bands. Bar = 0.01 mm.

were removed from the abdomen. Subsequently, the testes were put in sodium citrate (0.9 %) for 45 minutes and then fixed in freshly prepared Carnoy's fixative (3 parts absolute alcohol : 1 part glacial acetic acid) and tapped on grease - free slides. Slides were proceeded for carbol fuchsin staining (Carr and Walker, 1961) and C - banding (Sumner, 1972). Relevant meiotic stages were micro- photographed for further cytogenetical investigations.

RESULTS

Carbol fuchsin staining

Chromosome complement of Anax immaculifrons (Fig. 1c), Anax indicus (Fig. 1e), Anax nigrofasciatus nigrolineatus (Fig. 1g), Anax parthenope (Fig. 2a), Gynacantha subinterrupta (Fig. 2c) show 2n (B&) = 27 (24A+2m+X0), while the only exception is Anax ephippiger with 2n (B&) = 14 (10A + 2m + neo - XY) resulted by the 13 simultaneous fusions in the complement (Fig. 1a). Moreover, variation in the size of sex chromosome and m chromosomes is observed. X chromosome is 2nd smallest in Anax nigrofasciatus nigrolineatus, Gynacantha subinterrupta, while it is medium sized in Anax immaculifrons, Anax parthenope and is of large sized in Anax indicus and Anax ephippiger (neo - XY). The size of m bivalent is slightly smaller than X chromosome in Anax parthenope (Fig. 2a), minute in Anax

Fig. 2. Anax parthenope Normal complement 2a. Diakinesis, C - banding 2b Diakinesis. Gynacantha subinterrupta Normal complement 2c. Diakinesis, C - banding 2d. Diplotene. Arrows show X chromosome and m bivalent. Arrowhead shows C - bands. Bar = 0.01 mm

			I				
S. No.	Species	Common Name	Locality	Latitude	Logitude	Altitude	Month/Year
7 - 7	Anax ephippiger (Burmeister, 1839) Anax immaculifronsRambur, 1842	Vagrant emperor Magnificent emperor	Sangrur(Punjab) Andretta	30° 36' 95" N 32° 03' 50" N	75° 86' 13" E 76° 33' 46" E	240m 1301m	July, 2020 May, 2018
ŝ	Anax indicus Lieftinck, 1942	Lesser Green Emperor	(Himachal Pradesh) Nagpur (Maharashtra)	21° 14' 58" N	79° 08' 82" E	310m	September, 2018
4	Anax nigrofasciatusnigrolineatus Fraser, 1935	Blue - spotted Emperor	Dal lake, (Himachal Pradesh)	32° 24° 71" N	76° 18' 38" E	1775m	June, 2018
5 6	Anax parthenope(Seyls, 1839) Gynacantha subinterrupta Rambur, 1842	Lesser emperor Dingy dusk hawker	Patiala (Punjab) Andretta (Himachal Pradesh)	30° 30' 95" N 32° 03' 50" N	76° 31' 76" E 76° 33' 46" E	257m 1301m	May, 2019 September, 2017

ı

 Table 1. Collection details of species of family Aeshnidae

ı

immaculifrons (Fig. 1c), *Anax indicus* (Fig. 1e), *Anax nigrofasciatus nigrolineatus* (Fig. 1g), *Gynacantha subinterrupta* (Fig. 2c) and small in *Anax ephippiger* (Fig. 1a) (Table 3). **C banding**

During diplotene, in Anax ephippiger, cross shaped autosomal bivalent are showing the terminal, sub - terminal and interstitial C - bands, m bivalent possesses less amount of C heterochromatin, while neo - XY bivalent is cross shaped and showing interspersed C - bands in (Fig. 1b). Similarly, in Anax parthenope, bivalents show terminal and interstitial C - bands, while m bivalent possesses less amount of C - heterochromatin and X chromosome reveals terminal C - bands (Fig. 2b). During the diakinesis, Anax indicus (Fig. 1f), Anax nigrofasciatus nigrolineatus (Fig. 1h) and Gynacantha subinterrupta (Fig. 2d) and metaphase - I, Anax immaculifrons (Fig. 1d) autosomal bivalents possess terminal C - bands, while m bivalent is C - negative except in Anax nigrofasciatus nigrolineatus (Fig. 1h) with less amount of C - heterochromatin and X chromosome is entirely C - positive in all the species (Table 4).

DISCUSSION

Cytogenetic data pertaining to 60 species (including *Anax indicus* of present study) of family Aeshnidae have been reviewed. Chromosome number in males varies from 2n = 14 - 27, resulted by the fusion of chromosomes (Fig. 3). The species are differentiated on the basis of chromosome numbers as 2n = 14, 15, 19, 21, 23, 24 (1species each); 2n = 16 (2 species each); 2n = 25 (4 species each); 2n = 26 (4 species each) and 2n = 27 (44 species). Most frequent chromosome number is 2n = 27 which is present in 73.3% of the species and considered as the type number of the family (Table 2).

Kiauta (1967a - d) discussed the evolution of chromosome number in odonate species. He considered n = 9 as ancestral chromosome number and divided dragonflies' chromosomes into two groups, one with high - n complements (n = 9 to 15) and second with low - n complements (n = 3to 7). He explained that size of chromosomes of high - n species is smaller than the size of low n species. He found the low - n complement in tropical species, while high - n complement in

No.	Name of species	Locality	Chromosome complement	Sex	m chromosomes determination	References
-	Aeshna caerulea(Strom, 1783)	Finland	n = 12	neo - XY	Absent	Oksala, 1943
2	Aeshna canadiensisWalker, 1908	U. S. A.	n = 14	X0	Present	Cruden, 1968
e	Aeshna clepsydraSay, 1839	U. S. A.	n = 14	X0	Present	Hung, 1971
4	Aeshna crenataHagen, 1856	Finland	n = 14	X0	Present,	Oksala, 1943; Perepelov and Bugrov, 2002
	•	Russia	n = 14	X0	Absent	· •
5	Aeshna cyanea(Muller, 1764)	Finland	n = 14	X0	Present	Oksala, 1943;Kiauta, 1969b
		Netherlands	n = 14	X0	Present	
9	Aeshna grandis(Linnaeus, 1758)	U. S. S.	n = 14	X0	Present	Fuchsowna and Sawczynska, 1928;Makalowskaja,
)	RU.	n = 13	X0	Present	1940, Oksala, 1939, 1943, 1944, 1945, Kiauta,
		S. S. R	n = 13	neo - XY	Present	1967a - d, 1968a - b, 1969b;Perepelov and
		Finland	n = 132	neo - XY	Present	Bugrov, 2002;Nokkala et al., 2002
		Netherlands	n = 26	neo - XY	Present	· · · · · · · · · · · · · · · · · · ·
		Russia	n = 13	X0	Absent	
		Finland				
7	Aeshna isoceles (Muller, 1767)	U. S. A.	n = 14	X0	Absent	Kiauta, 1978 under the name Anaciaeschna
						isosceles (Muller, 1767)
8	Aeshna juncea(Linnaeus, 1758)	U. S. S. R.	n = 13	neo - XY	Present	Makalovskaja, 1940;Oksala, 1943;Kiauta,
		Finland	n = 13	neo - XY	Present	1971; Perepelov and Bugrov, 2002
		Italy	n = 142	X0	Present	
		Russia	n = 26	neo - XY	Present	
6	Aeshna mixta Latreille, 1805	Netherlands	n = 14	X0	Present	Kiauta, 1969b;Sandhu and Malhotra, 1994;
		India	n = 13	X0	Present	Sharma and Durani, 1995;Perepelov
		India	n = 13	$\mathbf{X0}$	Present	and Bugrov, 2002
		Russia	n = 14	X0	Present	
10	Aeshna nigroflavaMartin, 1908	Japan	n = 14	X0	Present	Katatani, 1987; Perepelov and Bugrov, 2002
	•	Russia	n = 14	X0	Absent	•
11	Aeshna palmataHagen, 1856	U. S. A.	n = 14	X0	Present	Cruden, 1968
12	Aeshna serrataHagen, 1856	Finland	n = 13	neo - XY	Present	Oksala, 1943 under the name Aeshna osiliensis
						<i>fennica</i> Mierzejewski, 1913 and <i>Aeshna serrata</i> <i>fennica</i> Valle, 1938
13	Aeshna subarctica Walker, 1908	U. S. A.	n = 14	X0	Present	Oksala, 1943, 1952 under the name Aeshna subarctica
		Switzerland	n = 14	X0	Present	elisabethaeDjakonov, 1922;Kiauta and Kiauta, 1980
14	Aeshna umbrosa Walker, 1908	U. S. A.	n = 14	X0	Absent	Cruden, 1968 under the name Aeshna umbrosa
						<i>occidentalis</i> Walker, 1908 and <i>Aeshna</i> <i>umbrosa umbrosa</i> Walker. 1908
15	Aeshna verticalisHagen, 1861	U. S. A.	n = 14	X0	Present	Hung, 1971
16	Aeshna viridisEversman, 1836	Finland	n = 13	neo - XY	Present	Oksala, 1943;Perepelov et al., 1998
		Russia	n = 13	neo - XY	Present	
17	Aeshna walkeriKennedy, 1917	U. S. A.	n = 14	X0	Present	Cruden, 1968
18	Anaciaeschna jaspidea	India	n = 13	X0	Present	Walia and Sandhu, 1999

SOMAL & WALIA, Biosci., Biotech. Res. Asia, Vol. 19(4), 843-855 (2022)

846

Table 2. List of cytogenetically examined species of the family Aeshnidae. Nomenclature is based on 'World Odonata List' by Paulson et al. (2022)

	(Burmeister, 1839)					
19	Anax amazili(Burmeister, 1839)	Argentina	n = 14	X0	Absent	Capitulo et al., 1991;Mola et al., 1999
		Argentina	n = 14	X0	Present	
50	Anax concolorBrauer, 1865	Suriname	n = 14	X0	Present	Kiauta, 1979
21	Anax ephippiger (Burmeister, 1839)	India	n = 7	ХҮ	Present	Seshachar and Bagga, 1962 under the name
						Hemianax ephippiger (Burmeister, 1839);
6	Anax outtatus (Burmeister 1830)	Nenal	2n = 15	0X	Present	t resent study Kianta and Kianta 1987
12	Anax immaculifrons Rambur 1842	India	n = 14	X0	Present	Sangal and Tvagi. 1982: Walia <i>et al.</i> 2018
		India	n = 14	X0	Present	Present study
		India	n = 14	X0	Present	2
24	Anax imperatorLeach, 1815	France	n = 14	X0	Present	Kiauta, 1965, 1969b;Wasschner, 1985;Perepelov
	•	Kenya	n = 14	X0	Absent	and Bugrov, 2002
		Russia	n = 14	X0	Present	
25	Anax indicusLieftinck, 1942	India	n = 142	X0	Present	Present Study
26	Anax junius(Drury, 1773)	U. S. A.	n = 14	X0	Present	McGill, 1904, 1907;Lefevre and McGill, 1908;
		U. S. A.	n = 14	X0	Present	Kichijo, 1942; Kiauta, 1972c;Cruden, 1968
		Japan	n = 14	X0	Present	
		U. S. A.	n = 14	X0	Present	
27	Anax longipes Hagen, 1861	U. S. A.	n = 14	X0	Present	Cruden, 1968
28	Anax nigrofasciatus nigrolineatus	Nepal	n = 14	X0	Present	Kiauta, 1975;Sandhu and Malhotra, 1994;
	Fraser, 1935	India	n = 13	X0	Present	Walia and Sandhu, 1999; Walia <i>et al.</i> , 2018;
		India	n = 14	X0	Present	Present study
		India	n = 14	X0	Present	
		India	n = 14	X0	Present	
29	Anax papuensis(Burmeister, 1839)	Australia	n = 14	X0	Present	Kiauta, 1968c, 1969b under the
						name Hemianax papuensis(Burmeister, 1839)
30	Anax parthenope(Selys, 1839)	Japan	n = 14	X0	Present	Omura, 1957 under the name Anax parthenope
		India	n = 14	X0	Present	juliusBrauer, 1865;Thomas and Prasad, 1986;
		China	n = 14	X0	Present	Zhu and Wu, 1986;Suzuki and Saitoh, 1990;
		Japan	n = 14	X0	Present	Sandhu and Malhotra, 1994; Present study
		India	n = 13	X0	Present	
		India	n = 13	X0	Present	
31	Andaeschna unicolor (Martin, 1908)	Bolivia	n = 14	X0	Present	Cumming, 1964 under the name Aeschna
32	Austroaeschna anacantha	Australia	n = 14	X0	Present	V: uncourt Manuel, 1200 Kianta 1968c under the name Acanthaeschua
	(Tillyard, 1908)					anacantha (Tillyard, 1908)
33	Austroaeschna multipunctata	Australia	n = 14	X0	Present	Kiauta, 1968c under the name Acanthaeschna Multinimetera (Martin, 1001)
2	(IVIal IIII, 1901)	V D II	- 1 - 1	V.V	A heavet	Muupuncuuu (iviatuii, 1301)
5 v 7 v	Bastaescha Janata (Say, 1839)	U. S. A.	n = 15	V0 V0	Absent	Cruden, 1968
<u> </u>	Boyeria maciachiam(Selys, 1883)	Japan	n = 14	NV	rtesent	Omura, 1927
36	Boyeria vinosa(Say, 1839)	U. S.A. ĩ	n = 14	X0	Absent	Cruden, 1968
37	Caliaeschna microstigma	Greece	n = 8	neo - XY	Present	Kiauta, 1972b
ç	(Schneider, 1845)	,		011	¢	
38	Castoraeschna castor	Brazıl	n = 14	X0	Present	Kiauta, 1972a

Kiauta, 1975	Sandhu and Malhotra, 1994	Cumming, 1964	Capitulo <i>et al.</i> , 1991;Mola <i>et al.</i> , 1999; De Gennaro <i>et al.</i> , 2008	Kiauta, 1979	Walia, 2007 under the name <i>Gynacantha</i>	<i>milliard</i> iFraser, 1936 Tvagi, 1978a b	Kiauta, 1979;Ferreira <i>et al.</i> , 1979		Omura, 1957	Walia and Somal, 2019; Present study		Walia <i>et al.</i> , 2016	Kiauta, 1970	Kiauta, 1968c, 1969b	Kiauta, 1979 under the name Corrubae schnednteinentis Inteinentis	(Burneister, 1839)	Mola and Papeschi, 1994; Mola, 1995 as	Aeschna bonariensis Kambur, 1842	Klauta, 1973 under the name Aeshna californica (Calvert, 1895)	Mola and Papeschi, 1994 under the name	Aeshna confusaRambur, 1842Mola, 1995	Cumming, 1964 under the name <i>Aeshna diffinis</i> <i>diffinis</i> Rumbur 1842	Cumming, 1964 under the name	Aeshna intricataMartin, 1908	Cumming, 1964 under the name Aeshna peraltaRis, 1918	Mola and Papeschi, 1994 under the name	Aesenna cornigera pianalitica Calvett, 1952 Soura Bueno, 1987 under the	nameStaurophlebia reticulata reticulata (Burmeister, 1839)
Present	Present	Absent	Absent Present	Present Absent	Present	Present	Present	Present	Present	Present	Present	Present	Present	Present	Present		Absent	Present	Present	Present	Present	Present	Present		Present	Present	Present	
X0	X0	X0	X0 X0	0X X0	X0	X0	neo - XY	neo - XY	X0	X0	X0	X0	X0	X0	X0		neo - XY	neo - XY	X0	X0X0		X0	X0		X0	neo - XY	XO	2
n = 13	n = 13	n = 14	n = 13 n = 14	n = 14 n = 12	n = 14n = 13	n = 14	n = 13	n = 13	n = 14	n = 14	n = 14	n = 13	n = 14	n = 14	n = 13		2n = 26	n = 13	n = 14	n = 14	n = 14	n = 11	n = 10		n = 14	n = 8	n = 14	;
Nepal	India	Bolivia	Argentina Argentina	Argentina Suriname	India	India	Suriname	Brazil	Japan	India	India	India	Mexico	Japan	Suriname		Argentina	Argentina	Canada	Argentina	Argentina	Bolivia	Bolivia		Bolivia	Argentia	Brazil	11774127
(Brauer, 1865) Cephalaeshna orbifrons	Selys, 1883 Cephalaeshna sp.	Coryphaeschnaadnexa (Haven 1861)	Coryphaeschnaperrensi (McLachlan, 1887)	Corvphaeschnaviriditas	Calvert, 1952 <i>Gynacantha bayadera</i> Selys, 1891	Gynacantha hyalinaSelys. 1882	Gynacatha interioris Williamson,	1923	<i>Gynacantha japonica</i> Bartenev, 1909	Gynacantha subinterrupta	Rambur, 1842	Gynacanthaeschna sikkima (Karsch, 1891)	Oplonaeshna armata (Hagen, 1861)	Planaeschna milnei (Selvs. 1883)	Remartinia luteipennis (Burmeister 1839)		Rhionaeschna bonariensis	(Rambur, 1842)	Khionaeshna californica (Calvert, 1895)	Rhionaeshna confusa	(Rambur, 1842)	Khionaeshna diffinis (Rumhur 1842)	Rhionaeshna intricata	(Martin, 1908)	Rhionaeshna peralta(Ris, 1918)	Rhioneschna planaltica	(Calvert, 1842) Stauronhlehia reticulata	(Burmeister, 1839)
39	40	41	42	43	44	45	46		47	48		49	50	51	52		53	ļ	54 4	55		56	57		58	59	60	>

	No.	Name of species	Chromosomal complement	Conventional staining Size of X chromosome	g Size of m chromosomes	Variation in complement
		Anax ephippiger (Burmaister, 1820)	2n (B&) = 14 (10.4+2m+ max - YV)	X is largest V is madium sized	Small sized	2n = 14 with neo - XY
	7	Anax immaculifrons	2n (B&) = 27	Medium sized	Minute sized	by the 13 simultaneous
	ç	Rambur, 1842	(24A+2m+X)	1 000004	Minute circod	fusions between autosomes
	n	Anux inuicus lietuulos, 1942	2μ (D ∞) – 27 (24A+2m+X)	Laigost		with an autosome.
	4	Anax nigrofasciatus nigrolineatus Fraser. 1935	2n (B&) = 27 (24A+2m+X)	2 nd smallest	Minute sized	
	5	Anax parthenope	2n (B&) = 27	Medium sized	Slightly smaller	
	9	(Seyls, 1839) Gvnacantha subinterrupta	(24A+2m+X) 2n (B&) = 27	2 nd Smallest	than X chromosome Minute sized	
	1	Rambur, 1842	(24A+2m+X)			
		Tal	ole 4. Distribution of C - hetero	chromatin in the speci	es of family Aeshnida	e
No.	Nai	me of species	Distribution of C - heterochron Autosomes	aatin m chrom	osome	Sex chromosomes
1	Anc	tx ephippiger rmeister 1820)	Dark terminal, subterminal and interstitial C - hand	less amo	int of the second s	Cross shaped neo - XY hivalant with interconercod C - hands
7	And Rar	ax immaculifrons thur, 1842	Dark terminal C - bands on 9 or var bivalents. Light terminal C - ba on 3 bivalents.	ruca. C - negat ads	ive	C - positive
ξ	<i>Апс</i> 194	<i>ax indicus</i> Lieftinck, 12	Dark terminal C - bands on 8 bivalents.Light terminal C - bands on 4 bivalents.	C - negat	ive	C - positive
4	Anc nigi	ax nigrofasciatus rolineatus Fraser, 1935	Dark terminal C - bands on 9 autosomal bivalents.Light terminal C - bands on 3 hivaler	less amo C - heter	ant of ochromatin	C - positive
S	Am (Se	<i>xx parthenope</i> yls, 1839)	Dark terminal C - bands on 7 bivalents.Light terminal C - bands on 5 hivalents	less amo C - heter	unt of ochromatin	Tserminal C - bands
9	<i>Gyr</i> Rar	nacantha subinterrupta mbur, 1842	Dark terminal C - bands on 6 bivalents.Light terminal C - bands on 6 bivalents.	C - negat	ive	C - positive

Table 3. Morphological characterization of chromosome complements in the species of families Aeshnidae

temperate region species based on geographical distribution. He also explained that in Odonata breaks lead to haploid numbers 10 to 15 and fusions lead to haploid numbers 3 to 8 from the ancestral chromosome number n = 9.

During the present study, all the species of family Aeshnidae show 2n = 27, (26A+X) which is the type number of the family as earlier reported (Table - 2). The only exception is *Anax ephippiger* with 2n = 14, (10A+2m+neo - XY) which originated by the 13 successful fusions between autosomes and autosome with sex chromosome. The complement of the species is stable because same complement in the species has been reported by Seshachar and Bagga (1962).

Micro chromosomes and their size

Micro chromosomes (m) are considered as cytogenetic marker of the order Odonata. Absence or presence of m chromosomes depicts the taxonomic status of a species. McGill (1904) observed the presence of m chromosomes in chromosome complement of Anax junius for the first time in the family Aeshnidae. Later, Oguma (1930) proposed the "m chromosome theory" and considered m chromosome as an autosome which undergoes gradual diminution in volume until they disappear. Later, Dasgupta (1957) and Cumming (1964) supported the theory, but Kiauta (1968a) discarded the theory and considered m chromosomes as fragment of autosome which is present in 80% of the odonate species. He further explained that accidental breaks can occur at any time in the holocentric chromosomes which is responsible for the variation in the size of m chromosomes.

In the family Aeshnidae, out of 60 cytogenetically studied species, m chromosomes are present in 45 species, while they are absent in 15 species. Presently, all the 6 species of the family show the presence of m chromosomes in the complement (Table 2). Variation in the size of m chromosomes can serve as the identifying feature of odonate species and to differentiate closely related species of the same genus. Presently, variation in the size of m chromosomes has been recorded. Size of m bivalent is slightly smaller than X chromosome in Anax parthenope (Fig. 2a), minute in Anax immaculifrons (Fig. 1c), Anax indicus (Fig. 1e) Anax nigrofasciatus nigrolineatus (Fig. 1g), Gynacantha subinterrupta (Fig. 2c) and small in Anax ephippiger (Fig. 1a) (Table - 3).

Size and behaviour of sex chromosomes

In Odonata, majority of the species possess the XX(@&)/X0(B&) sex determining mechanism (Fig. 4). In the family Aeshnidae, Out of 60 species, 50 species possess XX(@&)/ X0(B&) sex mechanism, while 10 species show neo - XY sex determining mechanism, originated by the fusion of sex chromosome with an autosome (Fig. 4). 16.6% species possess neo - XY sex determining mechanism which is very high in the family Aeshnidae as compared to other families of the order.

During the present study, Anax immaculifrons (Fig. 1c), Anax indicus (Fig. 1e), Anax nigrofasciatus nigrolineatus (Fig. 1g), Anax parthenope (Fig. 2a) and Gynacantha subinterrupta (Fig. 2c) show XX/X0 sex mechanism, while Anax

Fig. 3. Different chromosome numbers present in the species of family Aeshnidae

Fig. 4. Sex determining mechanism in species of family Aeshnidae

ephippiger possesses neo - XY (Fig. 1a) as earlier reported (Seshachar and Bagga, 1962). They observed largest X chromosome and medium sized Y chromosome in the chromosome complement and explained that almost 13 centric fusions occurred in *Hemianax ephippiger*, which decreased the chromosome number from 27 to 14 and one fusion occurred between X chromosome and an

Fig. 5. Schematic presentations for the evolution of chromosome number and sex determining mechanism in *Anax ephippiger*

autosome. Similar results have been found in the species. Schematic presentations for the evolution of chromosome number and sex determining mechanism in *Anax ephippiger* (Burmeister, 1839): 2n = 14, (10A+2m+neo - XY) is established (Fig. 5).

Size of the X chromosome is peculiar feature of the species and is variable in different species. Majority of the researcher are silent as to the size of X chromosome, but few reports have recorded the size of X chromosome as smallest element in *Anax amazili* (Mola *et al.*, 1999) and in *Aeshna nigroflava* (Pereplov and Bugrov, 2002), while as second largest element in *Aeshna crenata* (Pereplov and Bugrov, 2002). Presently, X chromosome is 2nd smallest in the complement of *Anax nigrofasciatus nigrolineatus*, *Gynacantha subinterrupta*, while it is medium sized in *Anax immaculifrons*, *Anax parthenope* and large sized in *Anax indicus* and neo - XY of *Anax ephippiger* (Table 3).

C - banding

In the family Aeshnidae, C - banding has been reported on 11 species (Thomas and Prasad, 1986; Perepelov et al., 1998; Perepelov and Bugrov, 2002; Nokkala et al., 2002; Walia et al., 2016, 2018; Walia and Somal, 2019). They found terminal C bands on autosomal bivalents and X chromosome is mostly C - positive. Presently, C - banding on 6 species of family Aeshnidae have been under taken. C - bands are mostly present at the terminal regions, while amount of C - heterochromatin varies in the species. Moreover, distribution of C heterochromatin in m bivalent and X chromosome shows variations. The m bivalent is C - negative in Anax immaculifrons, Anax indicus and Gynacantha subinterrupta, while possesses less amount of C - heterochromatin in Anax ephippiger, Anax nigrofasciatus nigrolineatus and Anax parthenope. On the other hand, X chromosome is C - positive in Anax immaculifrons, Anax nigrofasciatus nigrolineatus, Anax indicus and Gynacantha subinterrupta, while shows terminal C - bands in Anax parthenope. Anax ephippiger and Anax parthenope possess different C - banding pattern as C - bands are present on the sub-terminal and interstitial regions of autosomal bivalents, while cross shaped neo - XY bivalent in Anax ephippiger shows interspersed C - bands (Table 4).

Presence of C-heterochromatin on the

terminal regions is due to the localization of centromeric activity at the terminal regions of the bivalents which is necessary for the segregation of chromosomes during division and is peculiar feature of holocentric chromosomes present in Odonata and in other insect groups. Cytogenetic analysis on *Anax indicus* (Lieftinck, 1942) has been attempted for the first time and C - banding of *Anax ephippiger* (Burmeister, 1839) and *Anax indicus* (Lieftinck, 1942) has been studied for the first time. List of cytologically studied species of family Aeshnidae has been updated to 60 species.

CONCLUSION

Chromosome complement and C - banding of six species of family Aeshnidae have been done and list of cytologically studied species of family has been updated to 60 species. All species have 2n = 27m with X0 - XX sex determination except Anax ephippiger with 2n = 14 + neo XY resulted by the 13 simultaneous fusions between the autosomes and autosome with sex chromosome. C-heterochromatin distribution has been compared among the species. C - bands are primarily seen at the terminal regions of autosomal bivalents, while Anax ephippiger and Anax parthenope also have C - bands in the interstitial and sub-terminal sections of the bivalents. Additionally, the distribution of C-heterochromatin for sex chromosome and m bivalent varies in the species.

ACKNOWLEDGEMENTS

We thankful to the Department of Zoology and Environmental Sciences, Punjabi University, Patiala for providing all the lab facilities, to UGC, New Delhi for financial support.

REFERENCES

- Capitulo, R. A., Mola L. M. and Agopian, S. S. (1991) Species catalogue and chromosomal data of Odonata from Argentina. Revista de la Sociedad Entomológica Argentina 49(1 - 4): 59 - 72.
- Carr, D. H. and Walker, J. E. (1961) Carbol fuchsin as a stain for human chromosomes. Stain Technology 30: 233 - 236.
- Cruden, R. W. (1968) Chromosome numbers of some North American dragonflies (Odonata).

Canadian Journal of Genetics and Cytology 10: 200-214.

- Cumming, R. B. (1964) Cytogenetic studies in the order Odonata. Ph. D. thesis. University of Texas, Austin.
- Dasgupta, J. (1957) Cytological studies of some Indian dragonflies. II: A study of the chromosomes during meiosis in thirty species of Indian Odonata (Insecta). Proceedings of Zoological Society Calcutta, 10: 1 - 65.
- De Gennaro, D., Rebagliati, P. J. and Mola, L. M. (2008) Fluorescent banding and meiotic behaviour in *Erythrodiplax nigricans* (Libellulidae) and *Coryphaeschna perrensi* (Aeschnidae) (Anisoptera, Odonata). Caryologia 61: 60 - 67.
- Ferreira, A., Kiauta B. and Zaha, A. (1979) Male germ cell chromosomes of thirty-two Brazilian dragonflies. Odonatologica 8: 5 - 22.
- Fuchsówna, J. and Sawczyñska, J. (1928) Zachowanie sie heterochromosomóv podcza smspermatogenezy u wažek (Odonata). Cz. I. Aeschna grandis L. Libellula quadrimaculata L. Archiwum Towarzystwa naukowego we Lwowie (III) 4 (9): 177 - 197 [in Polish].
- Hung, A. C. F. (1971) Cytological studies of five dragonflies (Odonata: Anisoptera). Entomological News 82: 103-106.
- Katatani, N. (1987) On the chromosomes of dragonflies, 1. Synopsis on the studies in some Japanese dragonflies. Aeschna 20: 21-31.
- Kiauta, B. (1965) The chromosome behaviour in spermatogenetic meiosis of *Anax imperator* Leach (Odonata: Aeshnidae). Tombo, Tokyo 7: 18-21.
- Kiauta, B. (1967a). Considerations on the evolution of the chromosome complement in Odonata. Genetica 38: 430 - 446.
- Kiauta, B. (1967b) A new hypothesis on the karyotypic evolution in Odonata. Tombo 10: 29 - 33.
- Kiauta, B. (1967c) A new hypothesis on the evolution of the chromosome complement in Odonata. Tombo 10(1 - 4): 29 - 33.
- 15. Kiauta, B. (1967d) Considerations on the evolution of the chromosome complement in Odonata. Genetica 38(4): 430 446.
- Kiauta, B. (1968a) Evolution of the chromosome complement in Odonata. *Entomologische* Berichten 28(5): 97 - 100.
- Kiauta, B. (1968b) Morphology and kinetic behaviour of the odonate sex chromosomes, with a review of the distribution of sex determining mechanisms in the order. Genenen Phaenen 12: 21 - 24.
- 18. Kiauta, B. (1968c) The chromosome numbers of eight Old World dragonflies (Odonata).

Chromosome Information Service 9: 3 - 4.

- Kiauta, B. (1969b) Autosomal fragmentations and fusions in Odonata and their evolutionary implications. Genetica 40: 158-180.
- Kiauta, B. (1970) The chromosomes of four Neotropical dragonflies from Mexico. Chromosome Information Service 11: 8-9.
- 21. Kiauta, B. (1971) Studies on the germ cell chromosome cytology of some cytotaxonomically interesting or hitherto not studied Odonata from the autonomous region Friuli-Venezia Giulia (northern Italy). Atti del Museo civico di Storia naturale di Trieste 27: 65-127.
- Kiauta, B. (1972a) Notes on new or little known dragonfly karyotypes, 1. The germ cell chromosomes of three Latin American species: *Argia funebris* (Hagen), *Megapodagrion contortum* (Selys) (Zygoptera: Coenagrionidae, Megapodagrionidae) and *Castor aeschna castor* (Brauer) (Anisoptera: Aeshnidae). Genenen Phaenen 15: 23 - 26.
- Kiauta, B. (1972b) Notes on new or little known dragonfly karyotypes, 2. Male germ cell chromosomes of four East Mediterranean species: Lestes barbarus (Fabricius), Calopteryx splendensamasina Bartenev (Zygoptera: Lestidae, Calopterygidae), Caliaeschna microstigma (Schneider) and Orthetrum taeniolatum (Schneider) (Anisoptera: Aeshnidae, Libellulidae). Genenen Phaenen 15: 95 - 98.
- 24. Kiauta, B. (1972c) Synopsis of the main cytotaxonomic data in the order Odonata. Odonatologica 1: 73 - 102.
- 25. Kiauta, B. (1973) Notes on new or little known dragonfly karyotypes, 3. Spermatocyte chromosomes of four Nearctic anisopterans: *Aeshna californica* Calvert (Aeshnidae), *Cordulia shurtleffi* Scudder (Corduliidae), *Sympetrum internum* Montgomery, and *S. madidum* (Hagen) (Libellulidae). Genen en Phaenen 16: 7 - 12.
- 26. Kiauta, B. (1975) *Cytotaxonomy of dragonflies, with special reference to the Nepalese fauna.* Lectures delivered at the Tribhuvan University, Kathmandu, Vol. 2. Nepal Research Center, Kathmandu.
- Kiauta, B. (1978) Two cytotaxonomically interesting cases of irreversible autosome fusion in dragonflies *Agria modesta* (Hagen) (Zygoptera: Coenagrionidae) and *Anaciaeschna isosceles* (Müller) (Anizoptera: Aeshnidae). Notulae Odonatologicae 1(1): 7 - 9.
- Kiauta, B. (1979) The karyotypes of some Anisoptera from Surinam. Odonatologica 2: 267 - 283.
- 29. Kiauta, B. and Kiauta, M. A. J. E. (1980)

The karyotypes of *Aeshna subarctica elisabethae* Djak. and *Somatochlora alpestris* (Sel.) from Switzerland (Anisoptera, Aeshnidae, Corduliidae). Notulae odonatologicae 1(6): 104 - 105.

- Kiauta, B. and Kiauta, M. (1982) The chromosome numbers of sixteen dragonfly species from the Arun Valley, eastern Nepal. Notulae odonatologicae 9: 143 - 146.
- Kichijo, H. (1942) Konchu no Senshokutai. IV. Tombo-Moku 2 [Insect chromosomes. IV. Order dragonflies, Pt. 2]. Nagasaki Igakukai Zasshi 20: 1639 - 1648 [in Japanese].
- 32. Lefevre, G. and McGill, C. (1908) The chromosomes of *Anax tristis* and *Anax junius*. *American* Journal of Anatomy 7: 469 487.
- Makalowskaja, W. N. (1940) Comparative karyological studies of dragon-flies (Odonata). Archives russes d'Anatomie, d'Histologie et d'Embryologie 25: 24 - 39.
- McGill, C. (1904) The spermatogenesis of *Anax junius*. University of Missouri Studies 2: 236 -250.
- McGill, C. (1907) The behavior of the nucleoli during oogenesis of the dragonfly with special reference to synapsis. Zoologische Jahrbücher. Abteilungfür Anatomie und Ontogenie der Tiere 23: 207 - 230.
- Mola, L. M. (1995) Post reductional division in Aeshna (Aeshnidae, Odonata). Hereditas 122: 47 - 55.
- Mola, L. M. and Papeschi, A. G. (1994) Karyotype evolution in *Aeshna* (Aeshnidae: Odonata). Hereditas 121: 185 - 189.
- Mola, L. M., Papeschi, A. G.and Carrilo, E. T. (1999) Cytogenetics of seven species of dragonflies. Hereditas 131: 147 - 153.
- Nokkala, S., A. Laukkanen and Nokkala, Laukkanen, C. (2002) Mitotic and meiotic chromosomes in *Somatochlora metallica* (Cordulidae [sic], Odonata). The absence of localized centromeres and inverted meiosis. Hereditas 136: 7 - 12.
- Oguma, K. (1930) A comparative study of the spermatocyte chromosome in allied species of the dragonfly. Journal of Faculty of Sciences, Hokkaido University 6: 1 - 32.
- Oksala, T. (1939) Über Tetraploidie der Bindeund Fettgewebe bei den Odonaten. Hereditas 25: 132 - 144.
- 42. Oksala, T. (1943) Zytologische Studien an Odonaten I. Chromosomenverhältnisse bei der Gattung *Aeschna* mit besonderer Berücksichtigung der postreduktionellen Teilung der Bivalente. Annales Academiae Scientiarum fennicae (A. 4, Biologica) 4: 1 - 64.

- Oksala, T. (1944) Zytologische Studien an Odonaten II. Die Entstehung der meiotischen Präkozität. Annales Academiae Scientiarum fennicae (A. 4, Biologica) 5: 1-33.
- Oksala, T. (1945) Zytologische Studien an Odonaten. III. Die Ovogenese. Annales Academiae Scientiarum fennicae (A IV, Biologica) 9: 1 - 132.
- Oksala, T. (1952) Chiasma formation and chiasma interference in Odonata. Hereditas 38: 449 - 480.
- Omura, T. (1957) A comparative study of the spermatogenesis in the Japanese dragonfly II: Family Aeschnidae, Gomphidae and Calopterygidae. Biological Journal 3: 1 - 86.
- Perepelov, E. and Bugrov, A. G. (2002) Constitutive heterochromatin in chromosomes of some Aeshnidae, with notes on the formation of the neo-XY/neo-XX mode of sex determination in Aeshna (Anisoptera). Odonatologica 31: 77 - 83.
- Perepelov, E. and Bugrov, A. G. and Sliwa, W. E. (1998) C - banding karyotypes of some dragonfly species from Russia. Folia Biologica 46: 3 - 4.
- Sandhu, R. and Malhotra, I. (1994) Karyological studies of four aeshnid dragonflies from the states of Jammu and Kashmir and Himachal Pradesh (India). In: Srivastava V.K. (Ed.), Advances in Oriental Odonatology: Proceedings of IV South Asian Symposium of Odonatology, Allahabad, India (10-12 October 1992) 111 - 115. Cherry Publications, Allahabad.
- Sangal, S. K. and Tyagi, B. K. (1982) The spermatocyte chromosomes of *Anax immaculifrons* Rambur from India (Anisoptera, Aeshnidae). Notulae odonatologicae 1: 154-155.
- Seshachar, B. R. and Bagga, S. (1962) Chromosome number and sex-determining mechanism in dragonfly *Hemianax ephippiger* (Burmeister). Cytologia 27. 443 - 449.
- Sharma, O. P. and Durani, S. (1995) A study on the chromosomes of three species of dragonflies (Odonata: Anisoptera). National Academy Science Letters 18: 5 - 6.
- Souza Bueno, A. M. (1982) Chromosomal studies in order Odonata. M. Sc. Thesis, Universidad Estatal Paulista, pp. 140.
- Subramanian, K. A. and Babu, R. (2017) *A checklist of Odonata (Insecta) of India*. Zoological Survey of India, Kolkata.
- Sumner, A. T. (1972) A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research 75: 304 - 306.
- Suzuki, K. J. and Saitoh, K. (1990) A revised chromosome study of Japanese Odonates (I). Chromosomes of 14 species belonging to nine families. The Science Reports of the Hirosaki

University 37: 38 - 49.

- Thomas, K. I. and Prasad, R. (1986) A study of the germinal chromosomes and C-band patterns in four Indian dragonflies (Odonata). Perspectives in Cytology and Genetics 5: 125 -131.
- Tyagi, B. K. (1978a.) The chromosome numbers and sex-determining mechanisms newly recorded in thirteen Indian dragonflies (Odonata). Chromosome Information Service 25: 5-7.
- Tyagi, B. K. (1978b) Studies on the chromosomes of Odonata of Dun Valley (Dehradun, India). Ph.D. thesis, University of Garhwal, Srinagar.
- 60. Tyagi, B. K. (1982) Cytotaxonomy of Indian dragonflies. B 2: 149 -161.
- Tyagi, B. K. (1986) Cytogenetics, Karyosystematics and Cytophylogeny of Indian Odonata. Indian Review of Life Sciences 6: 221 - 239.
- 62. Walia, G. K. (2007) Cytomorphological studies on *Gynacantha milliardi* Fraser of the family Aeschnidae (Anisoptera: Odonata). Cytologia 72, 57 - 62.
- 63. Walia, G. K. and Sandhu, R. (1999) Karyotypic study of two species of family Aeschnidae

(Anisoptera: Odonata). Chromosome Science 3: 45 - 47.

- Walia, G. K. and Somal, D. S. (2019) Cytogenetic report on *Gynacantha subinterrupta* Rambur, 1842 of family Aeshnidae (Odonata: Anisoptera) from Himachal Pradesh, India. Journal of Advanced Zoology 40(2): 128 - 135.
- Walia, G. K., Chahal, S. S. and Babu, R. (2016) Cytogenetic report on *Gynacanthaeschna* sikkima from India (Odonata: Aeshnidae). Odonatologica 45: 87 - 94.
- Walia, G. K., Chahal, S. S. and Somal, D. S. (2018) Chromosome observation based on C banding, Ag-NOR and sequence specific staining in two *Anax* species from India (Odonata: Aeshnidae). Odonatologica 47 (1/2): 145 160.
- Wasscher, M. 1985. The karyotypes of some dragonflies from Kenya and Sudan. Notulae odonatologicae 2 (6): 105 - 106.
- Zhu, H. and Wu, J. (1986) Notes on the male germ cell karyotypes of some Odonata from the Shanxi Province, China. Notulae Odonatologicae 2: 118 - 120.