# Prevalence and Clinical Spectrum of *Mycoplasma pneumoniae* in Community-acquired Pneumonia

# Mohd Kashif Ali<sup>1</sup>, Diwan Israr Khan<sup>2</sup>\*, Akansha Mittal<sup>1</sup>, Samreen Khan<sup>2</sup> and Swaleha Akhtar<sup>2</sup>

<sup>1</sup>Jawahar Lal Nehru Medical College, A.M.U, Aligarh, U. P., India. <sup>2</sup>Ajmal Khan Tibbiya College Hospital, A.M.U, Aligarh, U.P, India.

http://dx.doi.org/10.13005/bbra/3081

(Received: 26 November 2022; accepted: 18 January 2023)

Community-acquired pneumonia has been a serious health issue, particularly among the pediatric age group, and is considered to be one of the major causes responsible for hospital admissions [1]. It is a substantial cause of respiratory illness and mortality in children in developing countries. It is a widespread bacterial pathogen that has been associated with a variety of clinical features, including pulmonary and extrapulmonary manifestations. But as diagnostic testing is typically based on serology or non-standardized molecular techniques, the prevalence and epidemiology of hospitalized community-acquired pneumonia (CAP) owing to Mycoplasma pneumoniae are poorly recognized [6]. Because of its ample prevalence and fatal complications, there is a need to identify cases of Mycoplasma pneumonia and treat them optimally to minimize the long-term consequences. This study aims to recruit the cases of community-acquired pneumonia from the OPD and IPD of Jawahar Lal Nehru Medical College Hospital, AMU, Aligarh, for one year (October 2019–October 2020) in patients within 1–14 years of age and assess the prevalence of Mycoplasma pneumonia among them. Five (15.62%) of the total of thirty-two (100%) patients with community-acquired pneumonia had Mycoplasma pneumoniae infection diagnosed based on serology, with the majority of patients in the 1-5 year age group and variable clinical characteristics, with tachypnea, fever, and cough being the most prominent symptoms and diffuse reticular pattern and lobar consolidation being the most common radiological findings. It has been concluded from the above study that the prevalence of Mycoplasma pneumoniae in community-acquired pneumonia cases based on serology is low. However, because serology is not 100% sensitive and specific, and titers can range from complete absence for the first 7 days to highly detectable after one week of illness, the diagnosis should not be ruled out solely based on serology. Owing to the severity of the disease, a differential diagnosis of *M. pneumoniae* must always be kept in mind.

> Keywords: Community Acquired Pneumonia; Clinical Features; Mycoplasma Pneumoniae; Prevalence.

Community-acquired pneumonia has been a serious health issue, particularly among the pediatric age group, and is considered to be one of the major causes responsible for hospital admissions<sup>1</sup>. It has been a significant cause of respiratory illness and has resulted in numerous pediatric deaths in developing countries. Prematurity, undernutrition, poor socioeconomic conditions, and exposure to tobacco smoke are the components that raise the rates and severity of

 $* Corresponding \ author \ E-mail: \ is rarjnmch@gmail.com$ 

This is an d Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Published by Oriental Scientific Publishing Company © 2023



pneumonia in pediatric populations<sup>2</sup>. Streptococcus pneumoniae, Staphylococcus aureus, Mycoplasma pneumoniae, and Hemophilus influenzae are among the most common organisms responsible for CAP<sup>1</sup>. Among them, *M. pneumoniae* has been considered one of the deadliest ones responsible for hospital admissions. M. pneumoniae is a widespread bacterial pathogen that has been associated with various clinical manifestations, including pneumonia, encephalitis, and extra-CNS manifestations like Stevens-Johnson syndrome<sup>3,</sup> <sup>4</sup>. Mycoplasma pneumoniae (MP) is frequently linked to epidemics in communities and healthcare settings, notably in school-age children and adolescents<sup>5</sup>. But as diagnostic testing is typically based on serology or non-standardized molecular techniques, the prevalence and epidemiology of hospitalized community-acquired pneumonia (CAP) owing to Mycoplasma pneumoniae are poorly recognized<sup>6</sup>. Clinically, children with Mycoplasma pneumoniae CAP exhibited generalized features of fever, cough, diarrhea, and other vague symptoms7 that were insufficiently distinguishable to discriminate CAP caused by Mycoplasma pneumoniae from other etiologies. On multivariate analysis, the signs and symptoms linked to Mycoplasma pneumoniae CAP are comparable to those seen with other microorganisms, such as virus infections such as influenza. Additionally, clinical characteristics that are independently linked to MP detection, including rales, have historically been linked to common bacterial illnesses8. According to several epidemiological studies, M. pneumoniae infection rates range from 1.3% to 50%, and during epidemics, infection rates may exceed 50%<sup>9</sup>. In children under the age of five who have pneumonia, case-control statistics show that >1 microorganism was found in 93.0% of cases and 74.1% of controls10. Therefore, identifying the etiological profile of M. pneumoniae pneumonia and the connection to clinical characteristics may help to improve the management and treatment. Mycoplasma pneumonia is generally a benign illness, although it can have several pulmonary and extrapulmonary complications, particularly in young children and the elderly, such as ARDS, lung abscess, necrotizing pneumonitis, respiratory failure, myocarditis, aseptic meningitis, hemolysis, septic arthritis, hepatitis, pancreatitis, conjunctivitis, glomerulonephritis, and so on<sup>11</sup>.

The link between asthma and recurrent episodes of wheezing has been demonstrated in numerous studies. The initial study that specifically correlated viral illness and mycoplasmal infection to repeated bouts of wheezing in asthmatic children was published in 1970 by Berkovich et al.<sup>12</sup>. Of the 84 patients, 27 (32%) had corroboration of infection with either *M. pneumoniae* or a respiratory virus proven by serology. In a study by Lieberman et al., a large number of patients (18%) were discovered to suffer from M. pneumoniae pneumonia and were hospitalized for an acute exacerbation of bronchial asthma13. In another trial by Biscardi et al., an actual M. pneumoniae infection was located in 20%<sup>14</sup> (24/119) of the subjects already diagnosed with asthma during their recent exacerbation. Acute MP infection was identified in 26 (50%) of the 51 cases who were having their first episode of asthma<sup>14</sup>. It has been hypothesized that M. pneumoniaerelated community-acquired pneumonia in infancy is linked to a higher frequency of asthma. In 1994, Yano et al<sup>15</sup> documented a patient whose earlier acute mycoplasmal respiratory infection led to the beginning of bronchial asthma. M. pneumoniae may yet be isolated from respiratory secretions even after receiving excellent antibiotic therapy. When compared to controls, pulmonary structural abnormalities indicative of minor airway obstruction was seen much more frequently in the first 1-2 years following M. pneumoniae infection<sup>16</sup>. Continued Mycoplasma pneumoniae affection causes lower expiratory flow rates and increased airway hyperresponsiveness in those without asthma<sup>17</sup>. Because of the ample prevalence and fatal complications of community acquired pneumonia, there is a need to identify cases of Mycoplasma pneuemonia and treat them optimally to minimize the long-term consequences.

#### **MATERIAL AND METHOD**

This was a retrospective cohort study conducted from October 2019 to October 2021 at the Pediatric Outpatient and In-Patient Department and Pediatric Infectious Diseases Clinic, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India, on the prevalence of mycoplasma-related community-acquired pneumonia in 38 patients enrolled for the trial based on inclusion and exclusion criteria. 2 patients out of 38 expired during the hospital stay, and 4 patients were lost to follow-up. Therefore, a total of 32 patients were evaluated for analysis. The details of the study have been described as follows:

## Inclusion Criteria

Any case of Community-Acquired Pneumonia aged 1 to 14 years.

#### **Exclusion Criteria**

Patients with co-morbidities such as heart disease (Congenital or Acquired), Diabetes, and known respiratory illnesses like Chronic Lung disease, Asthma, Cystic Fibrosis, Tuberculosis, Developmental Delay, Obesity, and Syndromic children like Downs Syndrome.

# Consent for the study

Informed parental consent was signed by the parents of the patients willing to participate in the trial.

## Methodology

The study included all communityacquired pneumonia (CAP) cases that were presented to the inpatient and outpatient clinics of the Department of Pediatrics between October 2019 and October 2020, fulfilling the inclusion criteria. The diagnosis of community-acquired pneumonia was made as per the WHO criteria.

On the first day of the visit or admission, 2 ml of venous blood was drawn into a red-top vial while following all aseptic procedures, and it was quickly transported to the J.N. Medical College Immunology Lab in the Department of Microbiology. Following centrifugation of the samples, the serum was extracted with a pipette and kept at -20°C in a deep freezer for up to six months.

All the patients received treatment following standard guidelines.

## **Statistical Methods**

SPSS software was used to capture and analyze all data. The chi-square test was employed to assess categorical data that was presented as numbers and percentages. The mean and standard deviation were used to express continuous variables with a normal distribution. The differences were calculated using the t-test. A statistically significant difference was defined as a difference of P 0.05.

#### **OBSERVATION AND RESULT**

Demographic parameter are depicted in table 1. Table 2 depicts that out of a total of 32 patients (n=32), 22 patients (68.75%) had fever and cough, 17 (53.13%) patients had wheeze, 8 (25%) patients had rhinorrhoea and cyanosis, 19 (59.38%) patients had chest retractions, 32 (100%) patients had tachypnoea. The mean and SD of the temperature and SpO2 were 99.89  $\pm$  0.92 and 92.94  $\pm$  5.01 respectively.

It is clear from table 3 that out of a total of 32 patients, 10 patients (31.25%) had diffused reticular pattern, 19 (20.65%) patients had lobar consolidation, 3 (9.38%) patients had para-hilar infiltration and 0 patients had hyperinflated lung fields.

It is clear from table 4 that the mean and SD of age in the M. pneumoniae Ig M +ve and Ig M – ve group is  $2.84 \pm 2.13$  and  $4.00 \pm 3.94$ respectively with P = 0.529. Out of the total of 32 patients, 5 patients (15.625%) were M. pneumoniae Ig M +ve and 27 patients (84.375%) were M. pneumoniae Ig M-ve. Out of the total of 5 Ig M +ve patients, 4 patients (80%) were in the age group 1-5 yrs and 1 patient (20%) was between 5-10 yrs of age whereas no patient was in the age group 10-14 yrs. Furthermore, out of a total of 27 Ig M -ve patients, 20 patients (74.07%) were in the age group 1-5 yrs, 4 patients (14.81%) were in the age group 5-10 yrs and 3 patients (11.11%) were between 10-14 yrs of age. Based on sex, 2 patients (40%) were M. pneumoniae Ig M +ve among males whereas 15 male patients (55.56%) were *M. pneumoniae* Ig M –ve. Out of a total of 17 female patients, 3 (60%) were M. pneumoniae Ig M +ve and 12 (44.44%) were M. pneumoniae Ig M –ve with P = 0.522. The mean and SD of weight among the M. pneumoniae Ig M + ve group is  $12.06 \pm 5.35$  whereas it was  $14.15 \pm 7.84$ In the Ig M –ve group with P = 0.574. The mean and SD of the height of the patients among Ig M + ve and -ve groups were  $84.80 \pm 17.82$  and  $91.59 \pm 23.93$  respectively with P = 0.552. The mean and SD of BMI among M. pneumoniae Ig M + ve and – ve were  $16.07 \pm 1.97$  and  $15.86 \pm$ 2.18 respectively with P = 0.843. Out of the total

patients with family H/o wheeze, 3 patients (60%) were *M. pneumoniae* Ig M + ve and 8 (29.62%) patients were *M. pneumoniae* Ig M –ve with P = 0.189. Among the total hospitalized patients, 2 (40%) patients were *M. pneumoniae* Ig M + ve and 18 (66%) were *M. pneumoniae* Ig M –ve with P = 0.257.

It is clear from Table 5 that out of the total of 5 (100%) *M. pneumoniae* Ig M +ve patients, 5

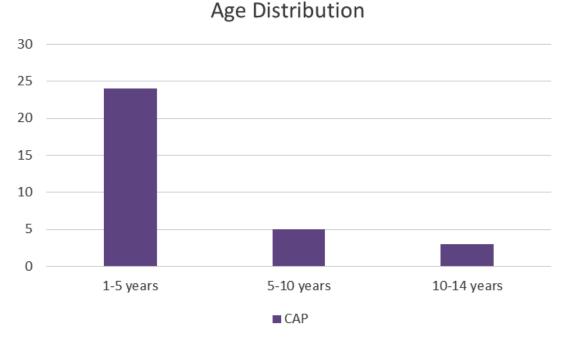
 
 Table 1. Demographic parameters of patients with CAP

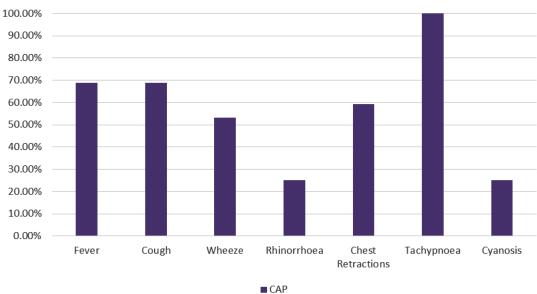
| AP(n=32)       |
|----------------|
|                |
| $32 \pm 3.71$  |
| 4 (75%)        |
| (15.63%)       |
| (9.38%)        |
|                |
| (53.13%)       |
| (46.88%)       |
| $83 \pm 7.47$  |
| $53 \pm 22.97$ |
| $89 \pm 2.12$  |
| 8 (25%)        |
| 0 (62%)        |
|                |

(100%) patients had fever, cough, and tachypnea; 4 (80%) patients had wheeze; 3 patients (60%) had rhinorrhoea; 2 (40%) had chest retractions; no patient had cyanosis. The mean and standard deviation of temperature was 100.18 0.64, and the mean and standard deviation of Spo2 was 95.40 2.07. There were 17 (62.96%) patients with fever, cough, and chest retractions; 13 (48.15%) with wheezing; 5 (18.52%) with rhinorrhoea; 27 (100%) with tachypnea; and 8 (29.63%) with cyanosis. The mean and SD of temperature and Spo2 in the *M. pneumoniae* -Ig M-ve group were 99.83 0.96 and 92.48 5.28, respectively. The corresponding P values of fever, cough, wheeze, rhinorrhoea,

Table 2. Clinical signs and symptoms among CAP

| Signs and Symptoms              | CAP(n=32)        |
|---------------------------------|------------------|
| Fever, n (%)                    | 22 (68.75%)      |
| Cough, n (%)                    | 22(68.75%)       |
| Wheeze, n (%)                   | 17 (53.13%)      |
| Rhinorrhoea, n (%)              | 8 (25%)          |
| Chest Retractions, n (%)        | 19 (59.38%)      |
| Tachypnoea, n (%)               | 32 (100%)        |
| Cyanosis, n (%)                 | 8 (25%)          |
| Mean Temperature ( $\pm$ SD), F | $99.89 \pm 0.92$ |
| Mean SpO2% (+/-SD)              | $92.94 \pm 5.01$ |





Fig. 1. Age Distribution

chest retractions, tachypnoea, cyanosis, mean temperature, and Spo2 in both *M. pneumoniae* Ig M +ve and -ve groups were 0.100, 0.100, 0.189, 0.049, 0.336, NA, 0.159, 0.449, and 0.237, respectively.

It is clear from Table 6 that out of a total of 5 *M. pneumoniae* Ig M +ve patients, no patient had a hyperinflated lung field, whereas 2 (40%) patients had a diffuse reticular pattern and lobar consolidation, and 1 (20%) patient had para hilar infiltration. In the *M. pneumoniae* Ig M-ve



Fig. 2. Sex Distribution



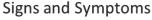


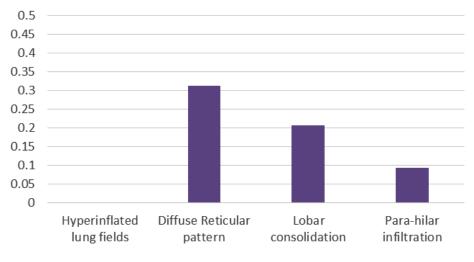

Fig. 3. Signs and Symptoms

201

| Tal | ole 3. | Radio | logical | findings | among | САР |
|-----|--------|-------|---------|----------|-------|-----|
|     |        |       |         |          |       |     |

| Radiological Findings                                                                                                                | CAP(n=32)                                    |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Hyperinflated lung fields, n (%)<br>Diffuse Reticular pattern, n (%)<br>Lobar consolidation, n (%)<br>Para-hilar infiltration, n (%) | 0<br>10 (31.25%)<br>19 (20.65%)<br>3 (9.38%) |
| Lobar consolidation, n (%)                                                                                                           | 19 (20.65%)                                  |

group, no patient had a hyperinflated lung field; 8 (29.63%) patients had a diffuse reticular pattern; 17 (62.96%) patients had lobar consolidation, and 2 (7.41%) patients had para hilar infiltration. In both the *M. pneumoniae* Ig M + ve and - ve groups, the corresponding P values were NA, 0.645, 0.336, and 0.374, respectively.

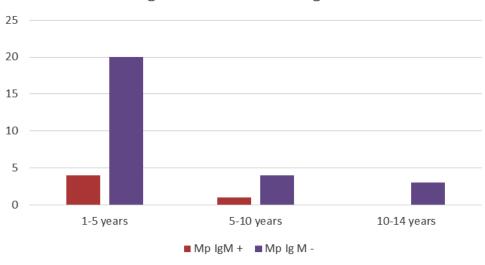

#### DISCUSSION

Based on age, the majority of patients, i.e., 24 (75%) patients with CAP, were 1–5 years of age.

 Table 4. Sub-group analysis among CAP (between IgM + and IgM -)
 Image: CAP (between IgM + and IgM -)

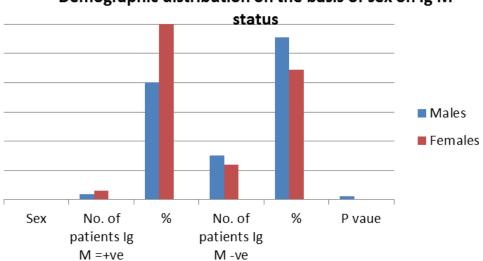
| Demographic parameters<br>Among CAP (n=32) | <i>M. pneumoniae</i><br>IgM +(n=5) | <i>M. pneumoniae</i><br>Ig M -(n=27) | $\chi^2$ value | p-value |
|--------------------------------------------|------------------------------------|--------------------------------------|----------------|---------|
| Age                                        |                                    |                                      |                |         |
| Mean Age (±SD), years                      | $2.84 \pm 2.13$                    | $4.00 \pm 3.94$                      | -              | 0.529   |
| 1-5 years,n (%)                            | 4 (80%)                            | 20 (74.07%)                          | 0.079          | 0.778   |
| 5-10 years, n (%)                          | 1 (20%)                            | 4 (14.81%)                           | 0.086          | 0.769   |
| 10-14 years, n (%)                         | 0 (0%)                             | 3 (11.11%)                           | 0.613          | 0.43    |
| Sex                                        |                                    |                                      |                |         |
| Male, n (%)                                | 2 (40%)                            | 15 (55.56%)                          | 0.409          | 0.522   |
| Female, n (%)                              | 3 (60%)                            | 12 (44.44%)                          |                |         |
| Mean weight (±SD), kg                      | $12.06 \pm 5.35$                   | $14.15 \pm 7.84$                     | -              | 0.574   |
| Mean Height (±SD), cm                      | $84.80 \pm 17.82$                  | $91.59 \pm 23.93$                    | -              | 0.552   |
| Mean BMI (±SD), kg/m <sup>2</sup>          | $16.07 \pm 1.97$                   | $15.86 \pm 2.18$                     | -              | 0.843   |
| Family h/o wheeze, n (%)                   | 3 (60%)                            | 8 (29.62%)                           | 1.724          | 0.189   |
| Hospitalization, n (%)                     | 2 (40%)                            | 18 (66%)                             | 1.28           | 0.257   |

# Radiological Findings




CAP

Fig. 4. Radiological Findings


This finding corresponds to previous studies that demonstrate that CAP is more prevalent in young children. With a frequency of 34 to 40 cases per 1,000 children in Europe and North America, CAP has been among the most prevalent severe illnesses in children<sup>18, 19, 20</sup>.

Although CAP-related deaths are uncommon in developed nations, lower respiratory tract infection is a prominent cause of childhood deaths in developing nations<sup>21, 22</sup>. However, out of the total 32 cases, only 5 (15%) patients were *M. pneumoniae* Ig M positive, and the rest 27 (85%) cases were *M. pneumoniae* Ig M negative. The majority of the 5 (15%) *M. pneumoniae* -IgM+ patients were between the ages of 1 and 5 years old. However, this does not hold true with data from previous studies, which demonstrated that most of the *M. pneumoniae* cases prevail in children older than 5 years<sup>23</sup>. Therefore, it has been advised to conduct further studies on a large sample size in



# Age distribution among CAP

**Fig. 5.** Age distribution among CAP



# Demographic distribution on the basis of sex on Ig M

Fig. 6. Demographic distribution on the basis of sex on Ig M status

this domain to find out the likely age group affected by *M. pneumoniae* and the possible reason behind its occurrence in this particular age group. Based on sex, 17 (53.13%) patients were males suffering from CAP and 15 (46.88%) patients were females. This finding is in agreement with previous studies which support the notion

| Signs and<br>Symptoms    | <i>M. pneumoniae</i><br>IgM +(n=5) | M. pneumoniae<br>(n=27) | $\chi^2$ value | p-value |
|--------------------------|------------------------------------|-------------------------|----------------|---------|
| Fever, n (%)             | 5 (100%)                           | 17 (62.96%)             | 2.694          | 0.100   |
| Cough, n (%)             | 5 (100%)                           | 17 (62.96%)             | 2.694          | 0.100   |
| Wheeze, n (%)            | 4 (80%)                            | 13 (48.15%)             | 1.718          | 0.189   |
| Rhinorrhoea, n (%)       | 3 (60%)                            | 5 (18.52%)              | 3.872          | 0.049   |
| Chest Retractions, n (%) | 2 (40%)                            | 17 (62.96%)             | 0.922          | 0.336   |
| Tachypnoea, n (%)        | 5 (100%)                           | 27 (100%)               | NA             | NA      |
| Cyanosis, n (%)          | 0                                  | 8 (29.63%)              | 1.975          | 0.159   |
| Mean Temperature(±SD)    | $100.18 \pm 0.64$                  | $99.83 \pm 0.96$        | -              | 0.449   |
| Mean SpO2% (±SD)         | $95.40 \pm 2.07$                   | $92.48 \pm 5.28$        | -              | 0.237   |

Table 5. Signs and symptoms among IgM+ and IgM- subgroups (CAP)

| Table 6. Radiological | findings among | IgM+ and IgM | - subgroups (CAP) |
|-----------------------|----------------|--------------|-------------------|
|                       | mango among    |              | Suconpo (criti)   |

| Radiological Findings:           | M. pneumoniae<br>IgM +(n=5) | <i>M. pneumoniae</i><br>Ig M -(n=27) | $\chi^2$ value | p-value |
|----------------------------------|-----------------------------|--------------------------------------|----------------|---------|
| Hyperinflated lung fields, n (%) | 0                           | 0                                    | NA             | NA      |
| Diffuse Reticular pattern, n (%) | 2 (40%)                     | 8 (29.63%)                           | 0.2111         | 0.645   |
| Lobar consolidation, n (%)       | 2 (40%)                     | 17 (62.96%)                          | 0.922          | 0.336   |
| Para-hilar infiltration, n (%)   | 1 (20.00%)                  | 2 (7.41%)                            | 0.787          | 0.374   |

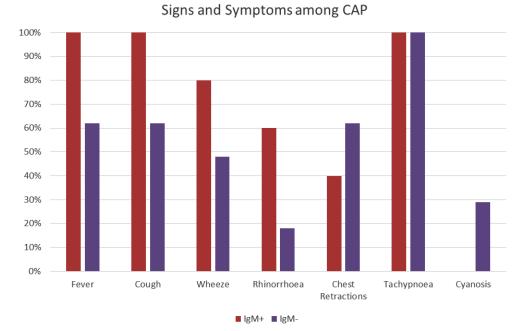
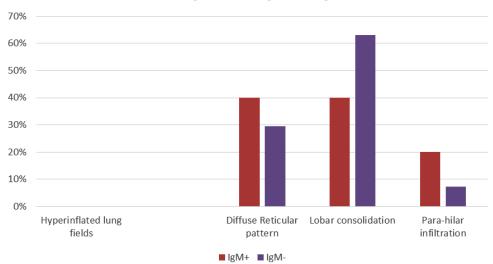




Fig. 7. Signs and Symptoms among CAP



## Radiological findings among CAP

Fig. 8. Radiological findings among CAP

that males are more likely to suffer from lower RTIs. The reviewed data also showed that males tend to have a more severe course of respiratory tract infection than females, resulting in increased deaths in males, particularly in communityacquired pneumonia cases. The involvement of sex hormones in immune system regulation may be responsible for observed sex variations in the occurrence and intensity of certain forms of RTIs, particularly in adolescents and adults<sup>24</sup>. However, out of a total of 5 (15%) M. pneumoniae IgM+ve patients, 3 were female and 2 were male which may be an incidental finding and does not have any clinical significance. 8 (25%) out of a total of 32 patients had family H/o wheeze of which 3 children were *M. pneumoniae* Ig M +ve. In another trial by Biscardi et, acute M pneumoniae infection was located in 20%<sup>14</sup> (24/119) of the subjects already diagnosed with asthma during their recent exacerbation. Acute M. pneumoniae was identified in 26 (50%) of the 51 patients who were having their first episode of asthma<sup>14</sup>. However, given hospitalization, 20 (62%) patients required hospitalization indicating the severe nature of CAP infection. Bhat et al<sup>25</sup> in their study put forth that most of the CAP cases requiring hospitalization belong to the under-5 age group. In our study, most of the children hospitalized had etiologies other than M. pneumoniae, and only 2 patients of the total 5 *M. pneumoniae* Ig M +ve required hospitalization.

Based on clinical features, all 32 patients had fast breathing (100%); 22 (68.75%) patients had fever and cough; 19 (59.38%) had chest retractions; 17 (53.13%) had wheeze, and 8 (25%) patients had rhinorrhoea and cyanosis. The mean temperature and SpO2 were 99.89 0.92 and 92.94 5.01, respectively. Five of the 22 (68.75%) patients with fever and cough were M. pneumoniae Ig M +ve, while the remaining 17 (62.96%)were *M. pneumoniae* Ig M -ve. There were 5 M. pneumoniae IgM+ve and 27 M. pneumoniae Ig M -ve patients among the 32 patients with tachypnea. There were two M. pneumoniae positive patients and seventeen M. pneumoniae Ig M negative patients among the 19 patients who had chest retractions. Four of the 17 wheezing patients tested positive for M. pneumoniae IgM+ve while 13 tested negatives. Three of the rhinorrhea patients had M. pneumoniae IgM+ve and five had *M. pneumoniae* IgM -ve. None of the eight cyanotic patients tested positive for IgM. To help medical and non-medical healthcare professionals diagnose lower respiratory tract infections (LRTIs) in the absence of radiological evidence, the WHO has created an algorithm<sup>26</sup> This algorithm is still helpful as a clinical tool in the UK, even though it was created for use in developing nations. Tachypnoea

is highlighted as a key sign of pneumonia in the WHO algorithm, which is consistent with our study as well. Tachypnoea, as defined by the WHO, has a sensitivity of 74% with 67% specificity for radiologically diagnosed pneumonia. When dealing with children who menstruate early, doctors must be cautious. In children with co-morbid illnesses like asthma, tachypnea as a marker of pneumonia must be used with caution because it can indicate a worsening of the underlying condition. Even when it is present together with a fever and a cough, an antibiotic may not always be necessary<sup>27</sup>. It has also been discovered that a high temperature in young children (up to 3 years old) can indicate pneumonia<sup>[28, 29</sup>. A sign of bacterial pneumonia is a temperature greater than 38.5 °C<sup>30</sup>. According to the BTS recommendations, pneumonia is indicated in children under the age of three when a fever >38.5 °C, chest retractions, and respiratory rate >50 are present. In older children, breathing difficulties by themselves are a more reliable indicator. However, the clinical presentation of M. pneumonia is often compared with other atypical microorganisms, particularly Chlamydia pneumoniae, viruses, and bacteria. M. pneumoniae may<sup>31</sup> also be found in the lungs concurrently with other microbes, and there is some corroboration from human and animal studies showing that infection with M. pneumoniae may either initiate or possibly flare up the subsequent infections with different respiratory pathogens<sup>32</sup>, such as S. progenes and Neisseria meningitides. Immunosuppression or a change in respiratory tract commensals caused by the co-existence of M. pneumoniae are two possible explanations for such an agonistic effect. The acute febrile phase typically lasts a week in uncomplicated cases, whereas the cough and malaise may exceed two weeks. If antibiotics are taken early in the disease, the duration of symptoms and signs will typically be shorter. The clinical features observed in our study did not vary greatly from those mentioned in other studies<sup>33, 34, 35</sup> except for tachypnea being the most common symptom, whereas it was fever and cough in others.

*M pneumoniae* pneumonia is a significant contributor to acute respiratory tract infections, particularly when considered as a possible cause of the clinical condition known as atypical pneumonia. Early diagnosis of *M. pneumoniae* infection is crucial to enhancing the identification of people in need of treatment and avoiding needless antibiotic administration. The most popular technique for identifying M. pneumoniae infections is serology. Furthermore, as antibody reactions can frequently be found even when the organism may not be collected through cultures, antibody identification is a more sensitive marker of Mp infection than the organism itself<sup>54</sup>. However, the sensitivity and specificity of ELISA Ig M for M. pneumoniae infection were 84.62% and 81.33% respectively<sup>55</sup>. M. pneumoniae-specific IgM antibodies may not be detectable for the initial one week of the illness but remain in the blood for several months after infection<sup>56</sup>. As a result, a single test of serology in an acute phase of the illness is not necessarily a reliable diagnostic method for acute M. pneumoniae infection. The earlier study found that the first positive test rate for M. pneumoniae IgM upon hospital admission was 63.6%, with the cumulative positive test rate increasing to 97.5% one week later<sup>57</sup>. Two serologies with the conversion from initial negative to positive or a rise in antibody titers (i.e. a two times increase in M. pneumoniae IgM or a four times increase in M. pneumoniae IgG) between the acute and convalescent phase point towards a very reliable diagnosis58. However, in individuals with compromised immunity, such as young children, the immunological response may be too weak to generate the antibodies<sup>58</sup> as seen in our study where most of the patients were between 1-5 vrs of age. Therefore, serology alone should not be considered as a basis for diagnosing M. pneumonia and specific antibiotics must be considered even in serology-negative cases when suspicion of atypical pneumonia particularly M. pneumonia is high.

Although there were certain limitations to our study on the grounds of infrastructure, resources, financial support, and small sample size, this study may serve as a relay and open a new door for further research on a large sample size with better tools, research techniques, and more appropriate parameters to obtain a more precise and authentic result.

#### CONCLUSION

Mycoplasma pneumoniae CAP exhibited generalized features of fever, cough, diarrhea, and other vague symptoms with radiological findings of Hyperinflated lung field, Diffuse reticular pattern, Lobar consolidation, and Para hilar infiltration.

It has been concluded from the above study that the prevalence of *Mycoplasma pneumoniae* in community-acquired pneumonia cases based on serology is low. However, since serology is not 100% sensitive and specific and may vary in titers serology alone. Owing to the severity of the disease, a differential diagnosis of *M. pneumoniae* pneumonia must always be kept in consideration particularly in unremitting cases of CAP by common antibiotics where suspicion of *M. pneumonia* is high.

# ACKNOWLEDGEMENT

I cannot express enough thanks to my committee for their continued support and encouragement.

## **Conflict of interest**

The authors have no conflict of interest. **Funding support** 

The authors received no external funding support for this research work.

#### REFERENCES

- 1. Schrock KS, Community-Acquired Pneumonia in Children. American Family Physician.2012;86(1):661-667
- Jadavji T, Law B, Lebel MH, Kennedy WA, Gold R, Wang EE. A practical guide for the diagnosis and treatment of pediatric pneumonia. CMAJ. 1997;156(5): S703-S711
- 3. Bitnun A, Ford-Jones EL, Petric M, et al. Acute childhood encephalitis and *Mycoplasma pneumoniae*. Clin Infect Dis 2001; 32:1674–84.
- Daxboeck F, Blacky A, Seidl R, Krause R, Assadian O. Diagnosis, treatment, and prognosis of *Mycoplasma pneumoniae* childhood encephalitis: a systematic review of 58 cases. J Child Neurol 2004; 19:865–71
- Sterner G, de Hevesy G, Tunevall G, Wolontis S. Acute respiratory illness with *Mycoplasma pneumoniae*. An outbreak in a home for children. Acta Paediatr Scand 1966; 55:280–6
- Winchell JM. Mycoplasma pneumoniae—a national public health perspective.Curr Pediatr Rev 2013;9:324–33
- Narita M. Pathogenesis of extrapulmonary manifestations of Mycoplasma pneumoniae infection with special reference to pneumonia. J Infect Chemother 2010; 16:162–9

- Musher DM, ThornerAR.Communityacquiredpneumonia.N Engl J Med 2014; 371:161928
- 9. Liu FC, Chen PY, Huang F, Tsai CR, Lee CY, Wang LC. Rapid diagnosis of *Mycoplasma pneumoniae* infection in children by polymerase chain reaction. J Microbiol Immunol Infect. 2007; 40:507–512
- Benet T, Sanchez PV, Messaoudi M, et al. Microorganisms associated with pneumonia in children < 5 years of age in developing and emerging countries: The GABRIEL Pneumonia Multicenter, Prospective, Case-Control Study. Clin Infect Dis 2017;65:604–12
- Abdulhadi B, Kiel J. Mycoplasma Pneumonia. [Updated 2022 Jan 24]. In: StatPearls [Internet]. Treasure Island (FL):StatPearls Publishing; 2022 Jan-.
- 12. Berkovich S, Millian S J, Snyder R D. The association of viral and mycoplasma infections with recurrence of wheezing in the asthmatic child. Ann Allergy 19702843–49.
- Lieberman D, Lieberman D, Printz S., et al Atypical pathogen infection in adults with acute exacerbation of bronchial asthma. Am J Respir Crit Care Med 2003167406–410
- Biscardi S, Lorrot M, Marc E., *et al* Mycoplasma pneumoniae and asthma in children. Clin Infect Dis 2004381341–1346
- 15. Yano T, Ichikawa Y, Komatu S., *et al* Association of Mycoplasma pneumoniae antigen with the initial onset of bronchial asthma. Am J Respir Crit Care Med 19941491348–1353
- Hardy R D, Jafri H S, Olsen K.*et al* Mycoplasma pneumoniae induces chronic respiratory infection, airway hyperreactivity, and pulmonary inflammation: a murine model of infection associated chronic reactive airway disease. Infect Immun 200270649–654
- Kraft M, Cassell G H, Pak J., et al Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest 20021211782– 1788
- 18. British Thoracic Society Standards of Care Committee. British Thoracic Society guidelines for the management of community-acquired pneumonia in childhood. *Thorax*. 2002;57(suppl 1):i1-24.
- Murphy TF, Henderson FW, Clyde WA, Collier AM, Denny FW. Pneumonia: an eleven-year study in pediatric practice. Am J Epidemiol. 1981; 113:12-21.
- Jokinen C, Heiskanen L, Juvonen H, Kallinen S, Karkola K, Korppi M, et al. Incidence of community-acquired pneumonia in the population of four municipalities in eastern

Finland. Am J Epidemiol. 1993; 137:977-88

- Boschi-Pinto C, Debay M. Informal consultation on epidemiologic estimates for child health. 11–12 June 2001. Accessed online February 27, 2004, at: http://www.who.int/child-adolescenthealth/New\_Publications/Overview/Report\_of\_ CHERG\_meeting.htm.
- 22. Redd SC, Vreuls R, Metsing M, Mohobane PH, Patrick E, Moteetee M. Clinical signs of pneumonia in children attending a hospital outpatient department in Lesotho. Bull World Health Organ. 1994; 72:113-8.
- 23. Kutty PK, Jain S, Taylor TH, Bramley AM, Diaz MH, Ampofo K, Arnold SR, Williams DJ, Edwards KM, McCullers JA, Pavia AT, Winchell JM, Schrag SJ, Hicks LA. *Mycoplasma pneumoniae* Among Children Hospitalized With Community-acquired Pneumonia. Clin Infect Dis. 2019 Jan 1;68(1):5-12
- 24. Falagas ME, Mourtzoukou EG, Vardakas KZ. Sex differences in the incidence and severity of respiratory tract infections.Respiratory Medicine.2007;101(9):1845-1863
- 25. Bhat JI. Et.al Risk of Hospitalization in Underfive Children With Community-Acquired Pneumonia: A Multicentric Prospective Cohort Study. Indian Pediatr.2021;58:1019-1023
- World Health Organization. The management of acute respiratory infections in children In Practical guidelines for outpatient care. Geneva: WHO, 1995
- Lakhanpaul M, Atkinson M, Stephenson T. Community-Acquired Pneumonia in Children: A Clinical update. Arch Dis Child Educ Pract Ed 2004; 89: ep29–ep34
- Cambell H, Lamont A, et al. Assessment of clinical criteria for identification of severe acute lower respiratory tract infections in children. Lancet 1989; i:297–9
- 29. Campbell SM, Hann M, Roland MO, et al. The effect of panel membership and feedback on ratings in a two-round Delphi survey: results of a randomized controlled trial. Medical Care 1999; 37:964–8].
- British Thoracic Society. British Thoracic Society guidelines for the management of community-acquired pneumonia in childhood. Thorax2002;57 (suppl I):i1–24.]
- Ferwerda A, Moll HA, de Groot R. Respiratory tract infections by *Mycoplasma pneumoniae* in children: A review of diagnostic and therapeutic measures. Eur J Pediatr. 2001;160: 483–91
- Cimolai N, Wensley D, Thomas ET. Mycoplasma pneumoniae as a cofactor in severe respiratory infections. Clin Infect Dis. 1995; 21:1182–5
- 33. Cherry J, Ching N.Mycoplasma and Ureaplasma

infections. R.D. Feigin, D.J. Cherry (Eds.), Textbook of pediatric infectious diseases (5th ed.), W.B. Saunders, Pennsylvania (2004), pp. 2516-2547

- Hammerschlag M. Mycoplasma pneumoniae infections.Curr Opin Infect Dis, 14 (2) (2001), pp. 181-186
- Domínguez A, Minguell S, Torres J, Serrano A, Vidal J, Salleras L. Community outbreak of acute respiratory infection by *Mycoplasma pneumonia*. Eur J Epidemiol, 12 (2) (1996), pp. 131-134
- Marrie TJ. Community-acquired pneumonia. Clin Infect Dis. 1994 Apr;18(4):501-13; quiz 514-5
- 37. Jartti A, Rauvala E, Kauma H, Renko M, Kunnari M, Syrjälä H. Chest imaging findings in hospitalized patients with H1N1 influenza. Acta Radiol. 2011 Apr 1;52(3):297-304
- Hopstaken RM, Witbraad T, van Engelshoven JM, Dinant GJ. Inter-observer variation in the interpretation of chest radiographs for pneumonia in community-acquired lower respiratory tract infections. Clin Radiol. 2004 Aug;59(8):743-52
- Campbell SG, Murray DD, Hawass A, et al. Agreement between emergency physician diagnosis and radiologist reports in patients discharged from an emergency department with community-acquired pneumonia. Emerg Radiol 2005; 11:242
- 40. Atamna A, Shiber S, Yassin M, et al. The accuracy of a diagnosis of pneumonia in the emergency department. Int J Infect Dis 2019; 89:62.
- 41. John SD, Ramanathan J, Swischuk LE. Spectrum of clinical and radiographic findings in pediatric mycoplasma pneumonia. Radiographics: a review publication of the Radiological Society of North America, Inc. 2001;21(1):121–31. Epub 2001/02/07. pmid:11158648
- 42. Hsieh SC, Kuo YT, Chern MS, Chen CY, Chan WP, Yu C. Mycoplasma pneumonia: clinical and radiographic features in 39 children. Pediatrics international: official journal of the Japan Pediatric Society. 2007;49(3):363–7. Epub 2007/05/30. pmid:17532837
- Cameron DC, Borthwick RN, Philp T. The radiographic patterns of acute mycoplasma pneumonitis. Clinical Radiology. 1977;28(2):173-80. pmid:870278
- 44. Yoon IA, Hong KB, Lee HJ, Yun KW, Park JY, Choi YH, et al. Radiologic findings as a determinant and no effect of macrolide resistance on the clinical course of *Mycoplasma pneumoniae* pneumonia. BMC infectious diseases. 2017;17(1):402. Epub 2017/06/09. pmid:28592263; PubMed Central PMCID:

208

PMC5463359

- 45. Defilippi A, Silvestri M, Tacchella A, Giacchino R, Melioli G, Di Marco E, et al. Epidemiology and clinical features of *Mycoplasma pneumoniae* infection in children. Respiratory medicine. 2008;102(12):1762–8. Epub 2008/08/16. pmid:18703327
- 46. Putman CE, Curtis AM, Simeone JF, Jensen P. Mycoplasma pneumonia. Clinical and roentgenographic patterns. The American journal of roentgenology, radium therapy, and nuclear medicine. 1975;124(3):417–22. Epub 1975/07/01. pmid:1155679
- Gückel C, Benz-Bohm G, Widemann B. Mycoplasmal pneumonia in childhood. Pediatric Radiology. 1989;19(8):499–503. pmid:2677945
- Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clinical microbiology reviews. 2004;17(4):697– 728, table of contents. Epub 2004/10/19. pmid:15489344; PubMed Central PMCID: PMC523564
- Lee I, Kim TS, Yoon HK. *Mycoplasma pneumoniae* pneumonia: CT features in 16 patients. European radiology. 2006;16(3):719–25. Epub 2005/10/11. pmid:16215734
- Tanaka H. Correlation between Radiological and Pathological Findings in Patients with Mycoplasma pneumoniae Pneumonia. Frontiers in microbiology. 2016;7(695). pmid:27242720
- 51. Narita M, Tanaka H, Yamada S, Abe S, Ariga T, Sakiyama Y. Significant role of interleukin-8 in the pathogenesis of pulmonary disease due to Mycoplasma pneumoniae infection. Clinical and diagnostic laboratory immunology. 2001;8(5):1028–30. Epub 2001/08/31. pmid:11527824; PubMed Central PMCID: PMC96192

- Ding S, Wang X, Chen W, Fang Y, Liu B, Liu Y, et al. Decreased Interleukin-10 Responses in Children with Severe *Mycoplasma pneumoniae* Pneumonia. PloS one. 2016;11(1): e0146397. Epub 2016/01/12. pmid:26751073; PubMed Central PMCID: PMC4708986
- Youn YS, Lee KY, Hwang JY, Rhim JW, Kang JH, Lee JS, et al. Difference of clinical features in childhood *Mycoplasma pneumoniae* pneumonia. BMC Pediatrics. 2010; 10:48. Epub 2010/07/08. pmid:20604923; PubMed Central PMCID: PMC2910686
- Srifuengfung S, Techachaiwiwat W, Dhiraputra C. Serological study of *Mycoplasma pneumoniae* infections. J Med Assoc Thai 2004; 87:935-8.
- 55. Kumar S, Garg IB, Sethi GR, Kumar S, Saigal SR. Detection of immunoglobulin M and immunoglobulin G antibodies to *Mycoplasma pneumoniae* in children with community-acquired lower respiratory tract infections. Indian J Pathol Microbiol 2018;61:214-8
- 56. H. Ishii, E. Yamagata, J. Murakami, R. Shirai, J. Kadota. A retrospective study of the patients with positive ImmunoCard Mycoplasma test on an outpatient clinic basis. J Infect Chemother, 16 (2010), pp. 219-222
- 57. W.J. Lee, E.Y. Huang, C.M. Tsai, K.C. Kuo, Y.C. Huang, K.S. Hsieh, et al.Role of serum Mycoplasma pneumoniae IgA, IgM, and IgG in the diagnosis of Mycoplasma pneumoniae-related pneumonia in schoolage children and adolescents.Clin Vaccine Immunol, 24 (2017):e00471-16
- K.B. Waites, L. Xiao, Y. Liu, M.F. Balish, T.P. Atkinson. *Mycoplasma pneumoniae* from the respiratory tract and beyond.Clin Microbiol Rev, 30 (2017), pp. 747-809