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	 The growing field of soil microbial forensics provides the legal answer to how 
microorganisms play a crucial role in criminal investigations. It is an advanced cross-
disciplinary science capable of offering significant physical evidence with considerable 
interest in criminal investigations, environmental crime, and counterterrorism. Microbial 
forensics of soil consists of different techniques to identify and evaluate microbial abundance, 
their complexity, and their interaction with soil and surrounding objects. The present review 
highlights various microbial analysis techniques such as Terminal restriction fragment length 
polymorphism, Temperature/Denaturing Gradient Gel Electrophoresis, Amplified Ribosomal 
DNA Restriction Analysis, Length Heterogeneity PCR, Phospholipid-derived fatty acids, 
Fluorescence in situ hybridization, Stable-isotope probing and metagenomics using next-
generation sequencing. This article also summarises the challenges faced in soil microbial 
forensics, various statistical approaches, reference databases commonly used in forensic soil 
studies, and different methodological approaches used in forensic laboratories. Literature was 
studied using various online bibliographic databases like Google Scholar, Web of Science, Pub 
Med, Scopus, and several other search engines. Conclusive evidence generated by this paper 
signifies the importance of soil microbes to assist forensic scientists and researchers in selecting 
adequate methods to differentiate soil samples. The present comparative study concluded that 
targeted molecular analysis of microbes as a forensic soil typing tool has a lot of potential and 
should be investigated further.
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	 Forensic Pedology is the science that 
uses soil information to solve officially approved 
questions, problems, or hypotheses 1. Soil is more 
likely to transfer and retained as it is typically 
found on clothes, footwear, and vehicles following 
a crime. It could be a potent method of contact as 
physical evidence, especially when criminals tend 
to forget soil evidence while tempering other pieces 
of evidence 2.

	 During the early 1990s, soil or sediment 
as physical evidence gained great attention 3-5. The 
soil and sediment analysis was used in forensic 
investigations by Prof. Ehrenberg in the 19th 
century to solve the missing silver coin mystery 
and effectively settle crime 2. In 1887, Sir Arthur 
Connan Doyle published many fictional novels 
involving soil comparison to solve the murder by 
Sherlock Holmes. In 1904, George Popp, a forensic 
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scientist, skilfully studied soil, mineral contents, 
dirt, and debris from clothing to determine criminal 
cases 6. The soil analysis is also effectively utilised 
as evidence in legal proceedings in Australia, the 
United Kingdom, and the USA 7.
	 Soil forensics is an emerging discipline 
that needs the standardization of novel methods 
to construct a database so that soil can be utilised 
as physical evidence in criminal investigations. 
Forensic scientists frequently employ a systematic 
methodology for screening purposes based on 
soil colour, soil texture, consistency, particle 
size, pH, and density 8. After this, spectroscopic 
techniques were used for the elemental analysis 
of the soil 9-12. After the initial screening and 
spectroscopic analysis of soil, more robust and 
statistically reliable methods are required for 
microbial profiling. This research presents a more 
detailed picture of microbial methods, including 
DNA fingerprinting methods and metagenomics, 
to identify a specific microbial community in the 
soil.
	 Soil microbial forensics is the science 
that can define how microbial communities can be 
used in criminal enquiries 13. Microbes are clearly 
a substantial soil constituent, with one tablespoon 
of soil having roughly 109 microorganisms. 
Merely 1% of soil microbes can be cultured by 
traditional methods, which makes soil one of the 
most complex ecosystems requiring molecular 
techniques to assess them 14. 
Soil microbial communities
	 The (micro) bio-composition of soil 
significantly enlightens the new field of soil 
microbial forensics 15. Microbes can convey 
information about the specific ecological 
environment that sustains them. The authors 
claimed that soil might be distinct due to the 
presence of specialised microbes present in the soil 
16. 
	 Each community may be present at a given 
density based on the soil type. Physical, chemical, 
biological, environmental, and anthropogenic 
factors can significantly impact the variety and 
diversity of soil microorganisms, which are unique 
for the particular soil type to be sampled 17. 
Materials and methodology
	 In this review, attempts have been made 
to document the importance of soil microbes 
to assist forensic scientists and researchers in 

selecting adequate methods to differentiate soil 
samples. Recent literature was cited by conducting 
a thorough search of electronic databases, such as 
PubMed, ScienceDirect, Web of Science, Scopus, 
and Google Scholar, by using appropriate/ specific 
combinations of words.
Molecular approach for the soil’s microbial 
diversity
	 The two primary categories of approaches 
used to explore soil microbial diversity are 
molecular and biochemical methods. However, 
current molecular tools are gaining more attention 
for crime investigations than biochemical methods 
due to their precision, sensitivity, feasibility and 
early results 18. In the present review, we emphasised 
the utilisation of molecular technologies for 
forensic investigations. 
DNA-based analysis of soil using DNA 
fingerprinting techniques
	 The forensic community uses several 
analysis methods to generate soil DNA profiling, 
but none are specifically designed for forensic use. 
Therefore, the forensic community must pick an 
approach that best meets its specific needs. DNA 
fingerprinting techniques that evaluate fragment 
length variation comprise Terminal Restriction 
Fragment Length Polymorphism (T-RFLP) 19, 20, 
Denaturing Gradient Gel Electrophoresis (DGGE) 
21, 22 and Temperature Gradient Gel Electrophoresis 
(TGGE) analysis, Amplified Ribosomal DNA 
Restriction Analysis (ARDRA) 23 and Length 
Heterogeneity- Polymerase Chain Reaction (LH-
PCR) 18, 24. 
Terminal Restriction Fragment Length 
Polymorphism (T-RFLP)
	 The T-RFLP approach, first introduced 
by Liu et al.  25 in 1997, has been acknowledged 
as a quick and effective way to create or monitor 
modified changes in the “structure and composition” 
of microbial communities 26. This approach is 
based on various fragment length that provides a 
unique pattern (fingerprint) liable bio-composition 
of the species present in the sample. T-RFLP 
fingerprinting method could be used to generate 
DNA profiles from the small amount of soil used 
to differentiate the samples 19. 
	 Macdonald et al. 27 explored the application 
of multiplex T-RFLP as a tool for soil microbes’ 
comparison from a forensic point of view. This 
technique employed the combined benefits of 
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multiple taxa with the T-RFLP approach, which 
offers a fast and cost-effective study of a microbial 
population at high-resolution. Macdonald et 
al. 28 investigated the ability of T-RFLP for 
microorganisms to discriminate between soils of 
different sites and exhibited clear differentiation, 
which may be helpful for location identification. 
Various forensic investigation of soil microbiota 
profiling has employed T-RFLP because it has high 
reproducibility and automatic nature 19, 29, 30

	 T-RFLP is a valuable tool for the basic 
evaluation of soil microbes’ population. Resolution 
and taxonomic identification are limited by the co-
migration of many taxa during electrophoresis, 
resulting in displays as a single band 31. Because of 
this, additional analysis through complex methods 
like next-generation sequencing, which has enough 
discriminatory power to identify soil microbes, is 
required for the sample that seems to possess the 
same T-RFLP profile but may not necessarily 
originate from a common source 32. Another 
drawback of this approach is library dependency, 
which necessitates the design of a library database 
for bacteria, archaea, and fungi.
Denaturing gradient gel electrophoresis (DGGE) 
and temperature gradient gel electrophoresis 
(TGGE) analysis
	 DGGE and TGGE are gel-based methods, 
employing either chemical or temperature gradients 
that denature DNA samples while passing across 
an acrylamide gel. This method can be utilised 
with DNA and RNA samples and proteins but is 
less widely used. DGGE distinguishes genes of 
the same size based on their various denaturing 
potentials, which are defined by the arrangement 
of their base pairs.
	 A study published by Lerner et al. 21 
described the use of DGGE to conduct criminal 
investigations and has enough discriminating 
potential to discriminate between variations in soil 
microbiota’s temporal and spatial variability. In 
one example, a young woman’s corpse was found 
near the river bank. After some days, the primary 
suspect was apprehended and claimed to be with 
the victim in the parking lot. After committing the 
crime, the suspect washed his clothes and shoes. 
There was no proof except a small amount of soil 
inside the suspect’s shoes. DGGE method was 
conducted on the samples taken from the crime 
scene, alibi scene, the accused’s house, and the 

surrounding areas. With the help of cluster analysis, 
banding characteristics were assessed. The samples 
gathered from the crime scene, and its environs 
were grouped, whereas those from the alibi scene 
and its surrounding could easily be differentiated 
from the crime scene. Furthermore, Sanachai et al.33 
elucidated that the origin of soil, obtained from the 
sole of a shoe, could be identified by a similarity 
comparison of soil bacterial 16S rDNA profiles 
separated by the DGGE method.
Amplified Ribosomal DNA Restriction Analysis 
(ARDRA) 
	 This fingerprinting technique is a 
robust tool for bacterium identification 34 and 
for investigating bacterial diversity in soil 
microorganisms 35. Horswell et al. 36 investigated 
a case of forensic soil identification in which 
they employed ARDRA to analyse 16S rDNA of 
soil bacteria by detecting the fluorescent labelled 
terminal fragment of RFLP (T-RFLP). In an 
investigation into a murder case in northern Italy, 
Concheri et al. 23 used the ARDRA method to 
compare or match the similarity of soil samples 
taken from the crime scene and the carpet of a 
suspect’s car. The results showed that the soil found 
in the car matched the soil taken from the crime 
scene. The results of this research had a significant 
role in the court’s decision. The ARDRA method 
was also used by Naknim et al. 37 to compare soil 
evidence from shoes collected from a mock crime 
scene with soil from the mock crime scene as well 
as irrelevant areas, and results showed that ARDRA 
is a reliable method for identifying the origin of soil 
by comparing soil bacterial community structure 
by clustering of 16S rDNA restriction profiles. 
Length Heterogeneity- Polymerase Chain 
Reaction (LH-PCR)
	 Length Heterogeneity PCR (LH-PCR), 
a modified version of the PCR method, is 
used extensively in several microbiology fields 
and is gaining prominence in the field of soil 
microbial analysis. LH- PCR differentiates 
different microorganisms based on naturally 
occurring sequence length of DNA 24, 38. Moreno et 
al. 18 compared the microbial metagenome profiles 
generated using LH-PCR analysis of 16S rRNA 
genes with Inductive Coupled Plasma- Optical 
Emission Spectroscopy (ICP-OES) analysis of 13 
elements commonly found in soils. The findings 
revealed that microbial metagenome profiling 
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was better than chemical characterisation could 
discriminate between various soil types and had 
a high reproducibility, proving a potential tool for 
soil comparisons in the criminal investigation.
	 This fingerprinting method helps predict 
geographical locations and provides an investigative 
tool that the suspect spent time at a specific site. 
A brilliant example of a study design for the 
prediction of location is provided by Damaso et al. 
39. The Authors studied soil DNA profiles using LH-
PCR method to test the biogeographical patterns 
of soils to determine whether soil microbial 
community is spatially correlated with a geographic 
location or not. Moreover, the results found that 
soil microbial communities have unique patterns 
and are spatially auto-correlated.
Phospholipid Fatty Acids in Soils (PLFAs)
	 PLFAs are the key component present 
in the soil microbe cell membrane. PLF analysis 
is the strategic biotechnological tool that shows 
significant differences in cellular membrane 
compositions of 2 different microbial communities 
for forensic soil discrimination application 
purposes 40. PLFA analysis collected from the 
various soil sample provides efficient structural 
information on the microbial community.  PLFA 
also provide information about the pattern of fatty 
acids present and the total microbial biomass of 
the soil microbial community 41. It is relatively 
inexpensive, reproducible, highly precise, lowest 
error rate and rapid methods employ certain 
advantages viz.  community-level physiological 
profiling 42 over DNA-based (DNA fingerprinting, 
Electrophoresis) methods 43. 
Fluorescence in situ hybridization (FISH)
	 Individual soil microbial cells can be 
simultaneously recognized, counted, localized 
and discriminate by using Fluorescence In 
Situ Hybridization (FISH) advanced analytical 
technique 44. FISH is a non-fingerprinting and 
highly sensitive technique due to the specificity 
to work on the low amount of rRNA 45

’ 
46. It is a 

frequently used, strong and effective technique in 
differentiating the microbial profiles of several soil 
samples with related geological properties 47. 
Stable Isotope Probing (SIP)
	 SIP is a biomedical technique used 
for the tracking of the movement of nutrients 
from isotopically tagged substrates to particular 
microbes in microbial communities. Stable-
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Fig. 1. Diagrammatic representation of microbial analysis of soil evidence from the crime scene to the court. 
(Although the author made the figure, the inspiration for it came from the source ref.67)

Isotope Probing, or SIP, continues to be one 
of the most comprehensive methods for in situ 
microbial community analysis 48.  To reconstruct 
the metagenome-assembled genomes (MAGs) of 
the microorganisms that produce tagged proteins, 
proteomic SIP and targeted metagenomic binning 
were used 49. Using proteomic SIP, active complex 
microbial communities from different soil samples 
collected from different places are functionally 
characterised in forensic prospectives. 
Cases studies of soil microbial evidence
	 Around the world, several cases have been 
solved utilising soil evidence by using microbial 
DNA analysis techniques (Table 2).

Metagenomics
	 The term metagenomics was invented in 
1998 by Handelsman et al. Metagenomics (also 
called environmental genomics, eco-genomics, 
or community genomics)  is the study of genetic 
material derived from a diverse community of 
organisms that are used to provide taxonomic 
and functional profiles of soil microbes 55. It is 
a molecular tool used to analyse DNA obtained 
from soil samples to study the soil microbes’ 
community without obtaining pure culture. 
Metagenomics allows an understanding of the 
different characteristics of a sample, characterises 
microbes, and describes the functional roles 
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of environmental soil microbes present in the 
samples. The use of metagenomics has steadily 
increased and provided new forensic identification 
opportunities 56, 57.
	 The primary aim of these techniques is 
to rebuild large-scale genomic data or functional 
processes of a selection of their genes. Several 
newer culture-independent metagenomics 
approaches do not use DNA, such as amplicon-
based, whole metagenome-based, and functional-
based metagenomic analysis. 
	 16S and 18S rRNA are the most common 
genes sequenced and amplified in the soil microbe’s 
community. Both genes offer valuable information 
about the diversity and abundance of bacteria 
and archaea (16S rRNA) and eukaryotes as fungi 
(18S rRNA). Above mentioned sequences are the 
most conserved and represent microbial genetic 
dissimilarity. Therefore, it indicates fundamental 
differences in phyla, genera, and species. This is 
the primary tool for identifying and characterising 
the soil microbial community, which may be 
valuable for soil microbial forensics in criminal 
investigations 58. It is a reliable and cost-effective 
way to differentiate microbial communities from 
thousands of samples. 
Metagenomics using Next Generation 
Sequencing (NGS)
	 NGS is a high-throughput sequencing 
method used for metagenomics analysis of the 
diverse microbial population, including their 
metabolic potential, structure, and effects on 
ecosystem function. Before NGS technology, 
forensic experts could not work with microbes 
because sequencing methods were too slow and 
expensive or dependent on culture-based methods. 
But with the advent of NGS technology, experts can 
identify DNA sequences of every microorganism 
present in a sample accurately, rapidly and 
comprehensively 59, and avoid experimental 
contamination caused by microbial cultures, which 
has proven helpful in forensics 60. 
	 The use of NGS tools has increased in such 
studies over the past decade as technologies have 
evolved from the 454 Roche and MiSeq Illumina 
to Nanopore and SMRT PacBio. 61 compared non-
culturing dependent tools and concluded that NGS 
can be combined with PLFA (PhosphoLipid Fatty-
acid Analysis) to get a structural and functional 
picture of the entire microbial community in soil. 

	 Numerous studies have been carried out 
by microbiologists to explore soil microbes using a 
next-generation sequence, but there is little research 
from a forensic point of view. Researchers surveyed 
soil microbes’ diversity and solved a fictional case 
study using a next-generation sequencing-based 
on 16s and 18sRNA genes, plant chloroplast 
leucine tRNA gene and fungal spacer region 
between rRNA genes 62, 63. The authors evaluated 
the effect of the development of fungal profiles 
through next-generation sequencing. The findings 
suggested that the development of the fungal profile 
was unaffected by the quantity of soil. Even tiny 
traces of soil, typically encountered in forensic 
case studies, provided valid genetic details 64. 
The researchers distinguished very similar and 
dissimilar habitat types over time and space and soil 
on evidence items by assessing bacterial 16s rRNA 
gene through next-generation sequencing. Forensic 
studies have also examined statistical approaches 
to accurately evaluate the large sequencing datasets 
to classify and differentiate soil samples 65, 66. 
Finley et al. 67 provided comprehensive literature 
about potential soil microbes ecology and NGS 
applications for forensic purposes.
Advantages and disadvantages of molecular-
based methods
	 Each molecular method has its advantages 
and disadvantages. An overview is given in Table 
3.
Statistical analysis tools for multivariate data
	 Although various methods for routine 
investigations have been developed and 
characterised, the findings must be evaluated with 
suitable and reliable statistical methods. Molecular 
techniques such as T-RFLP, DGGE, FAME, FISH, 
DNA sequencing, etc., provide complex data 
interpreted through specific statistical methods. 
The statistical tools viz., SIMPER 79,  ANOSIM 80, 
PCA 81-83, and Cluster analysis 84 are used to identify 
and individualise the component from multivariate 
data.
Reference databases for soil microbial 
community analysis
	 Soils have high microbial diversity and 
variability, which challenges studying microbial 
communities. To improve the understanding of the 
soil microbial community, we require a reference 
database or tools. Various tools and software are 
used for the soil microbial analysis for evaluation 
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and interpretation such as Greengenes 85, SILVA 
86, 87, RDP (Ribosomal Database Project) 88, NCBI 
(National Center for Biotechnology Information) 
89, MG-RAST (Metagenomic Rapid Annotations 
using Subsystems Technology) 90, 91, IMG/M 
(Integrated Microbial Genomes and Metagenomes) 
92, CAMERA 93, GOLD (Genomes OnLine 
Database) 94, MEGAN (Metagenomic Analyzer) 
95 and RefSoil 96.
Sequential examination of soil evidence in 
forensic laboratories
	 Soils are extremely diverse, complex, 
and external disturbance and pollution can alter 
physicochemical and microbial content; therefore, 
it is necessary to manage, store and transport to 
the forensic laboratory properly. The microbial 
analysis of soil in forensic laboratories has five 
steps: (1) collection, storage, and transportation of 
soil samples from the crime scene; (2) analysis by 
using the molecular tool, metagenomic sequencing, 
and classification of taxa; (3) comparison of the 
findings with the database; (4) evaluation and 
interpretation of the results and last (5) presenting 
the findings to the court (Fig. 1).
Challenges faced in soil microbial forensics 
	 There are several challenges faced in soil 
microbial forensics, some of which include:
1. Sample collection and preservation: Soil samples 
need to be collected and preserved correctly 
to prevent contamination or degradation of the 
microbial community. Improper handling of the 
soil samples can lead to false results, making 
it challenging to determine the source of the 
microorganisms.
2. Microbial diversity: Soil contains a vase and 
a diverse microbial community that can vary 
depending on the location, time of year, and other 
factors. Therefore, it can be challenging to identify 
and differentiate microbial populations, making it 
difficult to trace the source of the microorganisms 
97.
3. Limited reference databases: There is limited 
availability of microbial reference databases that 
can be used to compare and identify microbial 
populations. This makes it difficult to match soil 
samples to a specific location or source 98.
4. Environmental factors: Soil microbial populations 
can be affected by various environmental factors, 
such as temperature, moisture, and pH levels. 

These factors can cause variations in the microbial 
community and make it challenging to determine 
the origin of the microorganisms 99.
5. Legal challenges: Soil microbial forensics is 
a relatively new field, and there is limited legal 
precedence for the use of microbial evidence in 
court cases. Therefore, there may be challenges 
in presenting microbial evidence in a court of law.
	 Overall, soil microbial forensics is a 
complex field that requires specialised knowledge 
and techniques to overcome the challenges. 
Advances in technology and collaboration among 
experts can help address some of these challenges 
and improve the accuracy and reliability of soil 
microbial forensics.
Conclusive findings and discussion
	 Soil microbial forensics, an emerging 
field that exploits the diversity and dynamics of 
soil microorganisms, has great potential for various 
applications, such as environmental monitoring, 
agriculture, and forensics100. Through application 
of advanced techniques, the article summarizes the 
novel strategies related to the composition, spatial 
patterns, and ecological roles of soil microbiomes in 
forensic prospectives. Diverse group of techniques 
focused on identifying microbial signatures that 
can be used to differentiate between soils from 
different geographic regions or environments101. 
These signatures may include specific microbial 
taxa, functional genes, or metabolic pathways.
	 Nowadays significant advancements in the 
methods used to study soil microbial communities, 
including the development of high-throughput 
sequencing techniques and bioinformatics tools 
for analysing microbial data99. Despite the potential 
of soil microbial forensics, some significant 
challenges and limitations need to be addressed. 
These include issues related to reproducibility 
and standardization of methods, as well as the 
need for a better understanding of the factors that 
influence microbial community composition in soil. 
Cited literature highlights the development of new 
methods for analysing soil microbial communities, 
as well as further investigations into the potential 
applications of soil microbial forensics in different 
fields. The review summarizes the current state-
of-the-art molecular methods for soil microbial 
profiling and characterization and discusses the 
challenges and future directions of this field. 
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Conclusion 

	 The diverse, complex, and heterogeneous 
nature of soil makes it a reliable resource for 
linking culprit-victim relations in the criminal field. 
Forensic science and legal courts’ proceedings 
are progressively relying on the study of DNA for 
crime resolution. Soil offers a wealth of DNA data 
that needs to be implemented to the full extent and 
value. The use of molecular methods for forensic 
purposes is novel and holds excellent potential by 
offering forensic scientists an additional ‘tool in 
the toolbox’. This molecular approach proves to 
be a powerful and differentiating toolbox for the 
molecular exploration of different soil microbial 
samples with identical geographical features. The 
purpose of this study is to explore the geopolitical 
location of the crime site, help in intelligence 
work, locate clandestine burials, estimate Post-
mortem Interval (PMI), reduce the search area and 
comparative analysis of microbial community that 
supports the evidence when used in court.  
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