
BIOSCIENCES BIOTECHNOLOGY RESEARCH ASIA, December 2015. Vol. 12(3), 2971-2981

* To whom all correspondence should be addressed.

Evolutionary Synthesis of Large Discrete Systems
with Dynamic Structure

David Aregovich Petrosov1, Vadim Alexandrovich Lomazov1,
Sergey Lgorevich Matorin2, Alina Ivanovna Dobrunova1

and Valentina Ivanovna Lomazova2

1Belgorod State Agricultural University named after V. Gorin
Russia, 308503, Belgorod region, pos. Mayskiy,  ul. Vavilova 1

2Belgorod National Research University
Russia, 308015, Belgorod,  ul. Pobedy,  85.

DOI: http://dx.doi.org/10.13005/bbra/1981

(Received: 19 August 2015; accepted: 12 October 2015)

The article discusses the issue of development of method for structural synthesis
of large discrete systems with predetermined behavior and dynamic structure. This is
aided by combined approach to development of structural synthesis based on simulation
modeling, evolutionary methods and mathematical apparatus of Petri nets. The developed
evolutionary procedures of system structural synthesis makes it possible to carry out
structural synthesis in accordance with predetermined behavior not only by selection of
components from elemental base but also by variation of inter-component couplings. The
work proposes to apply genetic algorithms adapted to solution of problem of structural
synthesis using nested Petri nets. The system component base applied for the synthesis
procedure is expressed in the form of models based on Petri nets, the system models
obtained by synthesis are estimated by computational experiment, that is, launching of
the obtained system models by supplying of vector tuple to the model input and
comparison of the tuple from the model output with reference one. Upon adaptation of
genetic algorithm for operation with multi-component couplings it is proposed to highlight
a separate layer of inter-component bus.

Key words: System analysis, structural synthesis of large discrete systems,
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Systems can be classified in accordance
with the types of their state, behavior and identity.
One of practically important classes of systems is
large discrete systems (LDS). The systems of this
class are characterized with significantly complex
research due to their high dimensions. The systems
of this class are comprised of separate modules
(portions, elements, subsystems and so on),
coupled between each other. Herewith, the number
of portions and couplings is discrete (finite or
countable), and internal processes in the object

run under conditions of discrete time, which makes
it possible to perform discrete model description.
The considered class includes numerous social-
economical, organizational-technological and
engineering systems, such as power systems,
elements and devices of computing tools and the
like1, 2.

Presently, recent researches imply
development of new universal models and methods
of structural and parametrical synthesis of LDS with
predetermined behavior, which is urgent because
the systems of this kind are widely used in various
areas of interest. The essence of major issue
encountered during solution of LDS synthesis is
referred to this class of systems and is that at
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existence of 10 components and about 10 instances
of each component the number of possible
configurations will equal to 10^10; herewith, it is
ignored that the system can readjust during
functioning due to dynamic alteration of inter-
element  couplings or alteration of operation
parameters of its elements. These conditions can
significantly complicate labor consuming synthesis
of the system, that is, perform searching for system
configuration which is able to transform
predetermined input vector into required output
one. Herewith, it should be mentioned that it is not
always possible to vary the system elements, it
would be more reasonable to deal only with the
couplings between them.

EXPERIMENTAL

Simulation modeling
Taking into account labor consuming

solution of such problems it is proposed to apply
simulation modeling, since these tools make it
possible to describe the processes in LDS as if
they are real. The use of this method of mathematical
simulation would facilitate simulation of
synthesized system both for single and numerous
tests.

In up-to-date simulation modeling the
following mathematical tools are commonly
applied:
• Differential equations;
• Finite state machines;
• Markov chains;
• Theory of graphs;
• Petri nets.

These theories are widely applied in the
systems of simulation modeling and are used not
only at the stages of LDS development, but during
computation experiments with the models of
existing objects and systems.

Genetic algorithms
Application of only these tools does not

eliminate high labor consumption upon solution
of structural and parametric synthesis, and
application of the methods based on random
searching for solution is nearly impossible, thus, it
is common to introduce the element of determinacy
intrinsic for evolutionary methods. Among
numerous evolutionary methods the most widely

applied for solution of this class of problems are
genetic algorithms (GA) and genetic programming.
Application of these methods make it possible to
reduce the time of both structural and parametrical
synthesis of LDS, herewith, it is possible to solve
not only the problem of system synthesis with
fixed inter-component couplings but also with
dynamic ones3-6.

GA are based on the principles of natural
selection and genetics, that is, the most promising
specimens have the highest possibility to survive,
in addition, they possess the properties of
inheritance and can mutate.

A peculiar feature of GA with regard to
other evolutionary methods is as follows:
1. GA operates with solutions which are expressed

in the form of code line. The codes are
transformed without any relation with their
semantics.

2. Searching is based on the use of several points
of solution space simultaneously. This eliminates
possibility of undesired entering into local
extremum of objective function, which is not
unimodal.

3. Upon searching of GA only information about
permissible values of parameters and objective
function is used, which leads to significant speed
increase.

4. In order to synthesize new points GA uses
probability rules, and for transition from one
points to another deterministic rules. Such
merging of the rules is more efficient than their
separate application7-12.

It should be mentioned that this approach
provides possibility to influence on searching for
solutions by means of parameter presetting.
Application of Petri nets for description of genetic
algorithms

Genetic algorithms should be adapted to
object region, where they will be applied, and,
hence, it is required to select mathematical tools
on the basis of which it will be possible not only to
describe operation of adapted GA for solution of
the problem of structural synthesis of LDS with
fixed and dynamic inter-element couplings, but also
to perform parametrical synthesis of the system.

The most suitable mathematical tool
which satisfies the considered requirements is the
theory of Petri nets. There is a wide range of
variants of this tool: nested Petri nets, colored Petri
nets, timed Petri nets, inhibitor Petri nets, marked
Petri nets, and so on, that is, this tool makes it



2973PETROSOV et al., Biosci., Biotech. Res. Asia,  Vol. 12(3), 2971-2981 (2015)

possible to develop the model (depending on the
object region it is required to select a class of Petri
nets for simulation of elements) for any element of
LDS13-16. Herewith, this mathematical tool makes it
possible to combine two highlighted evolutionary
methods: genetic programming and genetic
algorithms. This is achieved due to the use of
nesting properties (description of genetic algorithm
at the upper level and expressing of marks of
subsequent levels in the form of genotypes: models
synthesized by LDS), and derivation of trees of
achievable markings (tree encoding in genetic
programming)17.

RESULTS

Statement of problem
Let us consider the following class of

problems of structural synthesis of LDS with
dynamic structure.

Given:

,

where O is the LDS, structural synthesis of which
should be performed;
In is the set of input data of O-LDS;
Out is the set of output data of O-LDS;
Sk is the kth subsystem of O-LDS;
¦a is the function, determining the input data
corresponding to input data: ¦a : In®Out;
Fb is the binary ratio at the set {Sk}Kk=1 : Fb
Ì{Sk}Kk=1 ́ {Sk}Kk=1 .

For the given function 
0af  it is required to

select binary ratio 
0bF  so that the set of subsystems

{Sk}Kk = 1 would provide processing of input data
by the O system in accordance with the
function 

0af .
Formalization using Petri nets

Inputs of O-LDS will be simulated by the
set of positions , where M  is the
number of system inputs, and its outputs by the
set of positions , where N  is the
number of system outputs (Fig. 1).

Inputs and outputs of O-system will also
be simulated by a set of positions. Inputs of the

Sk-subsystem are the set , where
M(k) is the number of inputs of the Sk-subsystem,

and its outputs are the set , where
N(k) is the number of outputs of the Sk-subsystem
(Fig. 2).

Fig. 1. Context model of LDS in the problem of
structural synthesis

Fig. 2. Multiple subsystems (elements) of O LDS
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Fig. 3. An example of system structure

Fig. 4. Expressing algorithm of processing by Petri
net

Fig. 5. Expressing of processing algorithm by
transition

Subsystems { }K
kkS 1=  can be coupled both

between each other and with the inputs and
outputs of O-system. These couplings will be

simulated by the set of transitions , where
Q is the number of transitions. Each tq transition is
characterized by its input and output positions.
Inputs of tq transition can be both any inputs of

O-system and any outputs of subsystems { }K
kkS 1= .

Outputs of tq outputs can be both outputs of O-
system and any inputs of subsystems { }K

kkS 1= .
Let us denote the inputs of tq transition as Inq,
and the outputs as Outq. Then,
on the basis of the aforementioned,

 è .

It is quite natural that for each input of O-
system a tq transition should exist coupled with
this input. In addition, for each output of each
subsystem Sk a tq transition should exist coupled

with this output. Formally, these requirements can
be written in the form of equality

.

Similarly, for each O-LDS output a tq
transition should exist coupled with this output,
and for each subsystem Sk a tq transition should
exist coupled with this input. Formally, these
requirements can be written in the form of equality

∪ ∪∪ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==

K

k

in
kout

Q

q
q PPOut
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Different transitions can have certain
common input and output position, but there
should not be totally coinciding transitions. This
requirement is formally written as follows:

2121 qqqq OutOutInIn ≠⇒=  (ïðè 21 qq ≠ );

2121 qqqq InInOutOut ≠⇒=  (ïðè 21 qq ≠ ).

The set of subsystems 

{ }K
kkS 1=

 together
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Fig. 6. Example of O-system model

Fig. 7. Description of genetic algorithm by Petri net

with the subset of transition set 
completely determine current configuration of O-
system. Not all subsystems { }K

kkS 1=  should be
involved in a current configuration. Herewith,
rearrangement of configuration (synthesis) of O-
system is determined by variation of subset of
currently active transitions. An example of system
configuration is illustrated in Fig. 3.

Rearrangement of functions (variation of
functioning algorithm of O-system) occurs in
subsystems { }K

kkS 1= . In general case each subsystem

Sk can be correlated with a set of Petri nets, which
will be the models of data processing programs.
Let us denote this set as PNk and define it as
follows: , where PNk,r is the rth

algorithm of data processing by the subsystem
Sk, expressed in the form of Petri net (Fig. 4).

It is formally required for each Petri net
PNk,r to describe its positions, transitions and
arcs. But in general case the net PNk,r simulates
certain action on transformation of input data into
output data. Thus, for the sake of simplicity, not
Petri nets PNk,r will be considered as algorithm
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Fig. 8. Generalization of inter-component couplings
into “Bus” layer

Fig. 9. “AND” element

Fig. 10. “OR” element
Fig. 11. “NOT” element

Fig. 12. “NAND” and “NOR” elements

models, but transitions (“degenerate” Petri nets).
Therefore, the set PNk will be expressed as

. Inputs Ink,r of each transition

tk,r can be any inputs of subsystem Sk: in
krk PIn ⊂, ,

and outputs Outk,r of each transition tk,r can be

any outputs of subsystem Sk: out
krk POut ⊂,  (Fig.

5.).
On the basis of the aforementioned a

model of O-system in the form of Petri net can
expressed, for instance, as illustrated in Fig. 6. In
this model the bold line highlights the route along
which the input data, supplied to upper two inputs
of O-system (highlighted by two marks in the
figure), pass across its subsystems and appear at

the lower output of O-system. Dashed line
highlights inactive transitions and arcs.
Description of genotype

GA should be adapted to actual object
region by preset of parameters and determination
of GA operators. When using GA, alternative
solutions are expressed in the form of symbol line
of fixed  length and referred to as genotype. Thus,
special attention should be paid to formal
description of genotype.

In our case genotype G should define::

• Which transitions of the set { }Q
qqtT

1=
=

will be expressed in the O-system model;
• Which transactions of the set

 will be expressed in the model of
each subsystem Sk.
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Therefore, genotype G will be as follows:
G = (g1,…, gq,…gQ, h1, …, hk,…,hK),
where gq Î{0,1} and hk Î{0,1,…,r,…,R(k)}..

If gq = 0, then the tq transition is absent
in the model of Oobject, otherwise (gq = 1) the tq
transition is present in the O-system model. If hk =
0, then the model of subsystem Sk has no algorithm
of data processing (the program is not loaded). If
hk = r (rÎ{1,…,R(k)}), then the model of subsystem
Sk contains tk,r transition.

Therefore, the number C  of all
hypothetically possible models of O-system is
determined as follows:

( )( )∏
=

+=
K

k

Q kRC
1

12 .

Hence, even at minor amount of
couplings, subsystems and algorithms of data
processing the number of O-system models is very
high. For instance, at Q = 10, K = 10 and R(1) =
R(2)=…=R(10) we have C = 210´1110 = 2210.
Objective function

Among all hypothetically possible
models of O-system we should determine such,
which solves the given problem: on the basis of

available set of subsystems { }K
kkS 1=  and transition

system { }Q
qqtT

1=
=  to construct such O-system

which will react to input vector (or a set of vectors)
by required output vector (or a set of vectors).
Thus, the closer is the output vector to the required
one, the better is the system obtained by synthesis.

In order to estimate this closeness let us
introduce notation for the required vector:

( )Nn vvvV …… ,,,1= , where vn is the number of

marks which should be in the position out
np  of O-

system. It is natural that vnÎ{0,1,2,3,…}. The vector
obtained as a result of operation of O-system we
denote as W = (w1,…,wn,…wN), where wn is the
number of marks which in fact are in the position

out
np  of O-system. Similarly, wn Î {0,1,2,3,…}..

The difference (distance) between the
required and actual vector can be estimated, for

instance, by the equation: .

Selection of objective function influences
on efficiency of operation of genetic algorithm.

Thus, in practice it is possible to apply the equation
setting classical Euclidian distance

, and rarely applied

equation ( ) nnNn
wvWV −=

≤≤1
max,ρ . Upon software

implementation of genetic algorithm it would be
reasonable to include the possibility of operation

with equation  into the

system, which at p = 1, p = 2 and p ’! “ expresses all
equations considered above. Varying the
parameter p, it is possible to influence on the
efficiency of operation of genetic algorithm.

The lower is ρ , the closer is the O-
system obtained by synthesis to the required one.
At 

0=ρ

 the system completely corresponds to
the preset requirement. Nevertheless, there is no
guarantee that it is possible to construct the
required O-system on the basis of a given set of

subsystems 

{ }K
kkS 1=

, their models { } ( )kR
rrkk tPN

1, =
=  and

couplings .

Operators of genetic algorithms
After selection of object function it is

possible to describe operators of genetic algorithm.
Selection operator should select those

genotypes for crossing, which are the closest to
the required configuration. This process can be
arranged, for instance, as follows: to order all
available genotypes in terms of quality (best to
worst) and to cross neighboring pairs. It is possible
to allow the best genotypes to participate in several
crossings.

Crossing operator can be described as
follows. Let us consider two genotypes:

and

.

We select at random two numbers: q  of
the range (set) {1,2,…,Q} and k of the range
{1,2,…,K}. And then we modify the respective
portions of the genotypes. Therefore, the parents
G1 and G2 provide the descendants G3 and G4,
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inheriting the properties of the parents:

.
It is possible to be limited with selection

of only one number (q or k). How many numbers
will be selected and if one, then which exactly — it
can also be determined at random. It is possible to
select two points for each range ({1,2,…,Q} and
{1,2,…,K}) and to exchange with “middles”.

Mutation operator can be described as
follows. Let us consider one genotype
G=(g1,…,gq,…gQ,h1,…,hk,…,hK). Let us select
at random two numbers: q of the range {1,2,…,Q}
and k of the range {1,2,…,K}. Then we change the
values gq and hk as follows. If gq=0, then we
reverse it to unity: gq = 1. And vice versa, if we had
gq = 1, then we have gq = 0. If we had hk = r, then
we replace it with any other of the range {0,1,…,r-
1,r+1,…,R(k)}. Naturally, at r = 0 it will be the
range {1,…,R(k)}, and at r = R(k) it will be the
range {0,1,…,R(k)-1}.

Reduction operator should remove weak
genotypes. With this aim after crossing it is
necessary to detect the properties of all
descendants. Then, the descendants and the
parents should be combined into one set of
genotypes and be ordered in terms of quality from
best to worst. Those in the worst segment should
be eliminated.
Solution of the problem

Prior to initiation of operators of genetic
algorithm an initial population of genotypes should
be preset. If there are any hypotheses on the
structure and functioning of O-system, then the
genotypes can be described by the designer.
Otherwise, it is possible to generate several
genotype at random. The size of population is also
determine dby the designer.

Operation of genetic algorithm can also
be described by Petri net (Fig. 7) as in previous
works [1, 17].

Initial population of genotypes
G1,G2,…G2D is positioned in Petri net. Operator
SEL performs selection of genotypes for crossing.
Operators CROSS1,…,CROSSd,…,CROSSD
perform crossing of genotypes which then are
exposed to mutation by operator MUT. The cycle
is finished by operator RED, which eliminates weak
genotypes. Then the process is repeated.

Model of inter-component bus
In a particular case rearrangement of O-

system structure can be carried out by means of
inter-component bus (IB). This method is widely
applied in LDS synthesis and requires individual
discussion [18-20].

Overall system of LDS elements and buses
is processed sequentially from the system input to
output. Initially the first layer of elements receives
and processes input signals. Then, using the first
bus, the signals are transferred to the second layer.
After processing the signals via the second bus
are transferred to the third layer and so on. The
process is finished after processing of the signals
by the last layer of elements, and the output vector
is the required one [21, 22].

Formally, for each bus a set of initial
positions In = {Inm} and a set of output positions
Out = {Outm} (m = 1, 2, …, M) are predetermined.
The input positions are the outputs of a previous
block of the system elements, and the output
positions are the inputs of a previous block of
elements (Fig. 8).

In order to simulate IB it would be
reasonable to use both elements selected for
synthesis, and logical elements. Each output
position Outm is associated (randomly generated)
with:
– “OR” block with identification of the set of input
positions;
– “NOR “ block with identification of the set of
input positions;
– the number of “AND” blocks;
– the number of “NAND “ blocks;
– the set of initial positions for each “AND”
(“NAND”) block.

Output position can be associated only
with one “OR” block, one “NOR “ block, several
“AND” blocks, several “NAND” blocks.

Bus operates as follows. Output positions
are processed sequentially from Out1 to OutM,
according to the algorithm. At first “OR” block is
processed, then “NOR” block. Further, “AND”
blocks are checked and, at the end, “NAND”
blocks. In order to accelerate the procedure the
“AND” blocks are initially checked with lower
number of input positions. The check is stopped
when a block is found which can be launched.

Therefore, a bus is completely
characterized with the set of blocks associated with
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each output position. Thus, crossing of buses is
the exchange with output positions.
Parents:
X-bus: xOut1, …, xOutm, xOutm+1, …, xOutM
Y-bus: yOut1, …, yOutm, yOutm+1, …, yOutM
Descendants:
X-bus: xOut1, …, xOutm, yOutm+1, …, yOutM
Y-bus: yOut1, …, yOutm, xOutm+1, …, xOutM
Mutation of bus is modification for any of output
position:
– the set of input positions of “OR” block;
– the number of “AND” blocks;
– the set of input positions for each “AND” block.
The “AND” element is simulated by transition, the
inputs of which are coupled with the positions
from which signals are supplied, and the inputs —
with the position to which they are supplied (Fig.
9).
The “OR” element is simulated by a block of
transitions, the inputs of which are coupled with
the positions from which signals are supplied, and
the inputs — with the position to which they are
supplied (Fig. 10).
The block operates according to the following rule.
Transitions are polled top-down. If any transition
can operate, then it is initiated and the other
transitions are not polled.
The “NOT” element is simulated by two transitions,
the inputs of which are coupled with position, the
signal from which should be inverted, and the
outputs with position to which the inverted signal
is supplied (Fig. 11).

The element operates as follows. Single
signal at input enables removal of a token from
input position. The signal absence at input does
not restrain the lower transition, which adds token
to the input position.

On the basis of models of “AND”, “OR”
and “NOT” elements it is possible to construct
models of “NAND” and “NOR “ elements (Fig.
12).

It should be noted that the “NAND” and
“NOR” blocks with one input are not equivalent to
the “NOT” element.

DISCUSSION

In order to initiate operation of the
proposed model it is required to position the models
of element base, which can be used in the system

synthesis, at origination of the expressed net. The
SEL transition generates initial population of the
models of synthesized system, estimates the
degree of approximation of the obtained results to
the required solution (by means of computation
experiment) and prepares pairs for the CROSS
transition. The CROSS  transition performs the
function of mating of parent pairs, and then the
descendants will be preserved. The MUT transition
performs mutation of certain specimens. New
generation of specimens is verified for conformity
to preset criteria by means of computation
experiment, that is, the obtained by synthesis
models based on Petri nets initiate their operation
by supplying of a set of vectors to input and are
compared with preset reference vectors at the model
output by determination of the distance between
them in Cartesian coordinates. Thus, the quality
of the obtained by synthesis LDS is estimated.
The most remote from the required solutions
specimens will be eliminated by the RED operator,
and the most adapted ones (closer to the synthesis
conditions) will continue searching until the
shutdown condition of operation of the proposed
model is reached. Such conditions are as follows:
• Determination of model of synthesized
large discrete system with total conformity to the
synthesis criteria;
• Termination of synthesis time of large
discrete system (in this case the system models
will be proposed, which are the closest to the
synthesis criteria);
• Limitation in number of processed
populations (in this case the system models will
be also proposed, which are the closest to the
synthesis criteria).

It should be mentioned that the proposed
model of genetic algorithm formalized by nested
Petri nets provides possibility to work  not only
with the models of elements but also with couplings
between them. In this case the SEL, CROSS and
MUT do not substitute the elements of synthesized
system but operate with inter-element coupling,
that is, modify the couplings between the system
elements. This is aided by dedicated layers of inter-
component buses.

CONCLUSIONS

The main result of this work is the
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development of genetic algorithm model, which
facilitated formalization and algorithmization of
structural synthesis of large discrete systems with
predetermined behavior by generation of solution
with dynamic structure on the basis of preset
components.

Solution of this problem is significantly
complicated by huge amount of possible variants
of implementation, from which it is necessary to
select those that satisfy the preset behavior. Three
theories were applied in solution of this problem:
evolutionary methods, simulation modeling, and
Petri nets. In order to eliminate this difficulty
genetic algorithms were applied adapted to
solution of the given problem by using multi-level
nested Petri nets.

In order to solve the complicated problem
in terms of computation load a separate layer of
inter-element couplings was applied: “inter-
component bus”. This enabled optimization of the
system synthesis using genetic algorithm based
on nested Petri nets.

The proposed approach will be further
applied to the problem of parametric synthesis of
large discrete systems with preset behavior with
dynamic and static inter-component couplings,
which implies operation of genetic algorithm not
only with components of synthesized system and
couplings between them, but also with adjustment
of components of large discrete system. This will
facilitate creation of universal method of structural
and parametric synthesis of large discrete systems.
Solution of the problem by existing methods at
present is labor consuming, since the searching
area is large.

In theoretical aspect it seems to be
promising to develop the proposed approach in
the problems of development of universal methods
of structural and parametric synthesis of large
discrete systems with modifying structure and
composition of involved components.
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