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 Ovarian cancer poses significant challenges due to limited treatment options and high 
mortality rates, necessitating innovative therapeutic strategies. Targeting DNA repair pathways, 
such as DNA polymerase ß (Pol ß), holds promise for improving treatment outcomes. This study 
aims to identify phytochemicals from the Super Natural database as natural inhibitors of Pol ß 
activity to enhance ovarian cancer therapy efficacy, particularly when used in combination with 
damaging agents. Screening a library of 21,105 drug-like molecules alongside 800 compounds 
from the natural products collection (NatProd, a unique compound library) involved applying 
Lipinski's Rule of Five, the Golden Triangle rule, and Pfizer’s rule. Following this, compounds 
predicted to exhibit carcinogenicity, toxicity, and mutagenicity were removed. The outcome of this 
rigorous screening process yielded 1,104 molecules eligible for structure-based virtual screening. 
Docking-based virtual screening using two servers was conducted on selected molecules, 
followed by computer simulations to assess their interaction dynamics and stability with Pol 
ß. Molecular dynamics simulations further evaluated stability and interactions, considering 
energy, forces, and interaction scores. From these analyses, four promising Pol ß inhibitors—
SN00158342, SN00305418, SN00004251, and SN00341636—were identified, exhibiting favorable 
stability profiles, interactions. The binding energiesforSN00158342, SN00305418, SN00004251, 
and SN00341636 were found to be -22.0327±3.8493, -15.9181±4.5020, -29.7465±6.7833 and 
-27.3184±5.1579kcal/mol respectively. Utilizing these compounds alongside DNA-damaging 
agents presents a novel and potentially fruitful approach to improving ovarian cancer treatment 
outcomes. Overall, this study underscores the potential of phytochemicals as effective Pol ß 
inhibitors, offering a promising avenue for enhancing ovarian cancer therapy effectiveness.

Keywords: DNA Polymerase beta; DNA-damaging agents; Inhibitors of DNA Polymerase beta; 
Molecular dynamic simulation; Ovarian epithelial carcinoma; Phytochemicals.

 Human body undergoes continuous 
exposure to mutagens, which damage DNA. An 
array of repair systems fixes those damages1. DNA 

damage and repair have significant biological 
consequences on aging and diseases like cancers2–4. 
It was found that several cancers are linked to 
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the mutation of DNA repair proteins like DNA 
polymerase â (Pol â), which is up-regulated and/
or mutated in several types of cancers, such as 
colon cancer, where the mutation rate reaches 
around 40%5. Mutations in Pol â are also highly 
linked to lung, breast, bladder, and esophageal 
cancers6.  Khana et al. explored various Pol â 
mutations associated with ovarian cancers7–11. 
Ovarian cancer is a significant health concern 
among Indian women, ranking as the third most 
common cancer and the eighth most prevalent 
overall in the country. Ovarian cancer accounts 
for 3.44% of all cancer cases and is also a leading 
cause of cancer-related deaths in Indian women, 
constituting 3.34% of all cancer-related deaths 
in the same year12. Unfortunately, the prognosis 
for ovarian cancer is often poor due to late-stage 
diagnosis. Only 15% of cases are detected in Stage 
I, where the 5-year survival rate is a promising 
94%13. The majority of cases, approximately 62%, 
are diagnosed in Stages III and IV, where the 5-year 
survival rate drops significantly to only 28%. These 
statistics highlight the urgent need for effective 
treatments. Currently, the standard approach for 
treating ovarian cancer involves platinum-based 
chemotherapy, which has remained unchanged 
for the past two decades14. This chemotherapy 
regimen, using drugs such as carboplatin or 
cisplatin along with paclitaxel, initially showed 
efficacy in most patients. However, approximately 
80% of women experience relapse, primarily due 
to the development of platinum resistance13–16. To 
improve treatment efficacy and patient survival, it 
is crucial to understand the molecular mechanisms 
underlying this resistance. This challenge has 
prompted researchers to explore novel therapeutic 
strategies. The DNA damage response system is 
emerging as a popular inhibition target. A recent 
study ascribes excellent responses to chemotherapy 
by some cancer patients to defects in DNA 
repair17. Poly(ADP-ribose) polymerase (PARP) 
inhibitors are well known for treating BRCA1-
deficient cancers18. Other DNA repair enzymes 
like glycosylases19, phosphodiesterases20, and 
polymerasesareoften used as targets21, 22. Inhibitors 
of DNA repair enzymes work in conjunction with 
damaging agents like radiation to kill cells. Pol â 
is also an attractive targetas it is the key enzyme 
of base excision repair pathways and also plays a 

role in double-strand break repair via the alternative 
nonhomologous end-joining pathway23–26. 
 However, synthetic inhibitors of Pol â 
are often costly27–33. Therefore, in this study, our 
objective is to explore the possibilities of natural 
molecules as inhibitors of Pol â using an in-silico 
approach. The use of natural molecules offers a 
promising avenue for the development of cost-
effective inhibitors for Pol â. These molecules 
will be identified through in-silico screening, 
which binds to the catalytic domain of Pol â. 
Such interactions could disrupt the DNA repair 
machinery, potentially working in conjunction with 
damaging agents to treat cancer.

SubjectS and MethodS

Phytochemical database
 The SuperNatural database (https://bioinf-
applied.charite.de/supernatural_3/index.php)
alongside 800 compounds from the natural products 
collection (NatProd, a unique compound library) 
were used in this study as a source of phytochemical 
structures. Supernatural is the largest repository of 
phytochemical information, containing information 
on over 449,058 phytochemical molecules, 
including their chemical structures, biological 
activities, and pharmacological properties34.
Initial Screening of phytochemicals for drug-
likeness
 Drug-likeness of the phytochemicals was 
assessed using Lipinski’s rule of five (RO5). RO5 is 
a set of criteria used to predict whether a compound 
is probably orally bioavailable and has good drug-
like properties35, 36. Based on Lipinski’s rule of five, 
the cut-off values were set as molecular weight 
d” 500 Da, hydrogen bond donors d” 5, hydrogen 
bond acceptors d” 10, log P d” 5, and the desired 
molecules were screened. Again, all the screened 
molecules were further screened for Absorption, 
Distribution, Metabolism and Excretion (ADME) 
properties using the ADMETLab2 server. (https://
admetmesh.scbdd.com/service/screening/index) 
to predict the pharmacokinetics and toxicity 
properties. The molecules showing toxicity and 
mutagenic activity were removed from the library.  
Protein model preparation
 A three-dimensional (3D) structure of 
Pol 5ØýÞ was prepared using homology modeling 
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as described previously37. In brief, the nucleotide 
sequences of Polâ were translated in-silico using the 
Expasy Translate tool (https://www.expasy.org/)38. 
The translated amino acid sequences were used 
for template identification by employing BLASTP 
against the PDB (http://www.rcsb.org/), and the 
PDB structure 1bpx (human DNA polymerase 
â, 2.40 Å, X-ray diffraction) was selected as the 
template39. The structure of DNA Pol 5ØýÞ was 
constructed using Modeller v 9.1140. The model 
was validated using the discrete optimized protein 
energy score (DOPE score), and the energy profile 
was plotted. Following model generation, primary 
structural analyses including target-template 
alignment, root-mean-square deviation (RMSD) 
value, and template modeling score (TM-score)
were determined, and the sequence logo based on 
the conservation of the target-template alignment 
was generated using Chimera 1.1641.
Structure-based Virtual Screening (VS)
 For affinity-based screening for primary 
screening, an affinity-based approach was employed 
Using the EasyVS server with the background 
algorithm Vina(http://biosig.unimelb.edu.au/
easyvs/,accessed on 25 September 2022)42. Three–
dimensional structures of the DNA polymerase â 
proteins were used for further screening of target 
drug molecules. Chemical spaces of dimensions X: 
3.672, Y: 12.247, and Z: 6.153 were subsequently 
prepared around the drugable site that was 
selected as the potential target site(Table 1). The 
best conformation with an affinity score lower 
than -6.5 and numerous hydrogen bonds e” 7 
were selected for further analysis. All the screen 
molecules were again re-docked using another 
server, Dockthor(https://www.dockthor.lncc.br/
v2/)43.
electrostatic complementary-based screening
 Electrostatic complementary-based 
screening(EC) was performed using Flare Pro+ 
software to identify the types of interactions 
between the protein and the ligands. The screening 
process is necessary to narrow down the number of 
molecules to be tested in the next step44. Following 
the initial screening, an evaluation copy of the 
software was requested, which is freely available 
for academic use for a period of one month. This 
step resulted in the shortlisting of approximately 
30-40 molecules, representing approximately one-
fifth of the original pool(Table 2).

neural network for final screening drug 
molecules
Neural networking models, inspired by the 
intricacies of the human brain, are powerful tools 
for decoding complex biological phenomena45, 

46. In the context of separating phytochemical 
molecules, these models employ machine learning 
algorithms to categorize compounds based on their 
physicochemical properties. Critical parameters 
include van der Waals (vdW) energy, electrostatic 
energy, and hydrogen bonding strength, which 
influence molecular interactions and facilitate 
effective phytochemical separation. Van der Waals 
forces, which govern noncovalent interactions, 
maintain an optimal energy range of -47 to 
-35kcal/mol. This balance ensures controlled and 
efficient phytochemical separation by harmonizing 
the attractive forces between the molecules. 
Electrostatic interactions, vital for stability, operate 
optimally within -25 to -15 kcal/mol, striking a 
delicate balance between attractive and repulsive 
forces to maintain specificity in separation. 
Hydrogen bonding strength, integral to molecular 
recognition, functions optimally between 8 and 12, 
aiding phytochemical isolation and contributing to 
the prevention of Polâ mutation and subsequent 
cancer development.
Molecular dynamics study
 A molecular dynamics study was 
performed for 100 nsusing the Amber ff19SBforce 
field and the general AMBER force field (GAFF)
to evaluate the binding stability of docking 
complexes47, 48.  A dodecahedral box of 12 Å was 
constructed around the protein-ligand complexes, 
and the box was dissolved in TIP3P water. The 
charges were neutralized by the addition of 
either Na+ or Cl” ions at a molar concentration 
of 0.15 M.The systems were subjected to energy 
minimization at 300 K under a pressure of 1 bar. 
The systems were subsequently equilibrated for 20 
ns, imposing positional restraints of 700 kJ/mol. 
The simulations were performed using the GPU-
accelerated version of the OpenMM 7.6 engine 
and the ‘Making it Rain’ cloud-based molecular 
simulation notebook environment49, 50. The 
trajectories generated during the MD simulations 
of the protein-ligand complexes were analyzed to 
calculate the values of RMSD, root-mean-square 
fluctuation (RMSF), radius of gyration(Rg), and 
hydrogen bonds(Fig.3a, Fig.3b, Fig.3c).
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determination of Free energies of Protein-
Ligand complexes
 The binding free energies of the docked 
complexes were calculated using the mechanics/
generalizedBorn surface area (MM/GBSA) 
approach51. The binding free energies(ÄGbind) 
were calculated using the following equations52, 53.

 Where ÄGcomplex,ÄGreceptor, and 
ÄGligand represent the free energy of the complex, 
receptor, and ligand, respectively in the following 
equations:

Where DG represents free energy.
 The energy in the gas phase (DEgas) 
comprises the internal energy (DEint), electrostatic 
interactions (DEele), and van der Waals interactions 
(DEvdW) energy terms.Thesolvation-free energy 
(DGsol) comprises the polar energy (DGGB) 
and nonpolar energy (DGSurf) terms. TÄSgas 
represents the contribution of conformational 
entropy.

ReSuLtS

Screening of drug molecules based on 
pharmacokinetics
 The SuperNatural library contains 449,058 
natural compounds along with their structural 

and physicochemical information34. Based on 
Lipinski’s rule of five, 21104 drug-like molecules 
were screened. These molecules, alongside 800 
compounds from the natural products collection 
(NatProd, a unique compound library) molecules, 
were subjected to further screening by predicting 
their ADMET properties. Most of the compounds 
qualified for the Golden Triangle rule, Lipinski’s 
rule of five, and Pfizer’s rule. Molecules with 
predicted carcinogenicity, rat oral acute toxicity, 
AMES toxicity, and mutagenicity potentials 
were removed, and finally, 1,104 molecules were 
selected for structure-based virtual screening.
Structure prediction by homology modeling
 In the model quality assessment, the 
predicted structures of DNA polymerase â from 
the amino acid sequences showed >96% favorable 
regions in the Ramachandran plots, with the 
QMEAN score <0.90 (>0.6), as determined by the 
MolProbility tool of the SWISS MODEL(Table 1).
Pocket Identification and docking-based 
Virtual Screening
 Grid-based HECOMi finder (Ghecom)is a 
program for finding multi-scale pockets on protein 
surfaces using mathematical morphology34,54-55. 
A total of fifteen pockets were identified in the 
structure of the DNA Pol â protein by the Ghecom 
algorithm. The largest pocket in the DNA Pol â 
protein had a volume of 3654.65 +!3. The second 
largest pocket had a volume of 246.78 +!3. The 
smallest pocket within the structure of the Pol â 
protein had a volume of 29.18 +!3. In this study, 

table 1. Identification of Binding Pockets in Human DNA Pol â Protein and Grid Box Generation and total 
amino acid residues present in the binding pockets of DNA Pol âfor Molecular Docking Studies

Protein  Coordinate of  Structure Amino Acid Residues
Name Docking Box

DNA  X:3.672;   P-151, K-167, K168, V-169, E-172, G-179,  
polymerase β Y:12.247;  F-181, R-182, G-184, A-185, M-191, D-192, 
 Z:6.153  V-193, L-194, L-195, T-196, H-197, P-198, 
   S-199, F-200, T-201, S-202, E-203, K-206, 
   Q-207, P-208, K-209, L-210, L-211, H-212, 
   Q-213, V-214, V-215, E-216, Q-217, L-218, 
   D-226, T-227, K-230, G-231, E-232, T-233, 
   K-234, F-235, G-237, V-238, L-241, P-242, 
   R-253, I-255, D-256, I-257, R-258, L-259, 
   I-260, P-261, K-262, D-263, Q-264, Y-265, 
   Y-266, G-268, V-269, L-270, F-272, T-273, 
   G-274
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Fig. 1. Molecular docking of the compounds to the predicted binding pockets of the DNA polymerase beta 
enzyme

table 3. Selected drug molecules based on Neural Network

No. 1 2 3 4

Supernatural Id SN00305418 SN00158342 SN00004251 SN00341636

the second largest pocket was chosen which lies 
into the catalytic domain of the protein, were set 
as (X:3.672; Y:12.247; Z:6.153).
 After the primary screening, approximately 
1104 drug molecules were selected. The selected 
molecules were screened using docking-based 
virtual screening using the “EsayVS” server. 
Compounds with an affinity score of -6.5 with 
h-bond 7 protein-ligand interactions were selected. 
Totals of 135 molecules were finally selected 
against Pol â protein. These 135 molecules were 
further screened using the DockThor server.
 Additionally, the selected molecules were 
further screened based on their EC using Flare 
v5.0.0, and compounds with EC scores > 0.25 were 
considered for further study. 
Selection of drug molecules based on neural 
network
 Based on 6 parameters, affinity score, 
internal energy, van der Waal force, EC scores, 
electrostatic interaction, and number of h 

bonds, finally, seven molecules, SN00261400, 
SN00305418, SN00006989, SN00158342, 
SN00305418, SN00004251, and SN00341636 
were selected from the pool of 135 compounds. 
As SN00006989 and SN00158342 were found 
to be structurally similar to the SN00261400, 
and SN00305418 was found to be structurally 
similar to the SN00305418, only four molecules, 
SN00305418, SN00158342, SN00004251, 
and SN00341636 were considered for the md 
simulation study(Table 3).
analysis of Protein-Ligand Interactions
 The intermolecular interactions between 
the selected molecules with the binding sites of the 
Pol â are analyzed from the best docked pose for 
each molecule(Fig. 1).
 The SN00158342 molecule is primarily 
stabilized by four hydrogen bonds to Ser202, 
Glu295, and Lys206, with bond distances ranging 
from 1.9 to 2.3 Å. Additionally, it forms two van 
der Waals bonds with Lys206 and Tyr296, having 
bond distances of 2.6 Å and 3.1 Å, respectively.
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Fig. 2. Intramolecular interaction of the compounds with the predicted binding pocket of DNA Polymerase beta 
enzyme

 Similarly, SN00305418 is stabilized by 
six hydrogen bonds and two van der Waals bonds. 
The molecule forms hydrogen bonds with Ser204, 
Lys206, Thr233, Lys234, and Leu259, with bond 
distances ranging from 1.8 Å to 2.5 Å. It also 
creates two van der Waals bonds with Phe200 and 
Lys234, having bond distances of 2.8 Å and 3.0 Å, 
respectively.
 The SN00004251 forms five hydrogen 
bonds with Thr201, Ser204, Glu232, and Leu259, 
with bond lengths ranging from 1.9 to 2.2 Å. 
Additionally, two van der Waals bonds are 
observed between the molecule and Phe200, and 
Thr233, with bond distances of 3.0 Å and 3.7 Å, 
respectively.
 Unlike the previous three molecules, 
SN00341636 does not form van der Waals bonds 

with the target protein. Instead, the ligand is 
stabilized by forming five hydrogen bonds with 
Arg152, Val177, Arg182, Glu329, and Pro330, with 
bond distances ranging from 1.9 Å to 2.4Å(Fig.2).
Md Simulations of Protein-Ligand complexes
 MD simulation is a computational 
approach to predict and analyze the stabilities of 
protein-ligand complexes, and to study the atomic 
movements with respect to a macromolecule. 
The stabilities and behaviors of the protein-
ligand complexes were analyzed in a dynamic 
environment based on the following parameters; 
(i) root-mean-square deviation (RMSD), (ii) root-
mean-square fluctuation (RMSF), (iii) the radius 
of gyration (Rg), and (iv) molecular mechanics/
generalized Born surface area (MM/GBSA) 
energy52-55.
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Fig. 3a. The line graph depicting the stability of various protein-ligand complexes, including DNA Polymerase â, 
during a 100 ns Molecular Dynamics (MD) simulation. RMSD values of the protein-ligandcomplexes fitted to the 
Cá Backbone of target protein DNA Polymerase â.The X-axis represents the simulation duration in nanoseconds, 
while the Y-axis shows the Root Mean Square Deviation (RMSD) values in angstroms, measuring the deviation 

of each complex from a reference structure.Each colored line corresponds to a different complex, with the 
degree of line fluctuation indicating the stability of the complex: less fluctuation signifies a more stable complex, 

while more fluctuation suggests less stability. This graph assessing complex stability during the simulation, an 
important factor in effective drug design and protein engineering and identify a complex with minimal RMSD 

fluctuations, indicating that it maintains consistency with the target protein’s structure throughout the simulation.

Fig. 3b. Analysis of the Rg values of the protein-ligand complexes. The x-axis depicts the duration of simulation, 
while the y-axis represents the deviations in Rg
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Fig. 3c. RMSF values of the Cá backbone of Target protein DNA Polymerase â. The x-axis depicts the total 
number of residues, while the y-axis represents the RMSF in Å

RMSd Values of the cá backbone of target 
Proteins
 The RMSD values of the four protein-
ligand complexes were visualized by plotting 
RMSD values against time, which helps to 
understand the structural stability and integrity of 
the complexes. The trajectory analysis revealed 
that all the four compounds complex with Pol â 
remain stable throughout the 100 ns simulation. 
The average RMSD values of the 4 molecules 
selected against Pol â ranged from 2.449 to 4.781 
Å. Compounds SN00004251, SN00341636 
possess high stabilities during the simulation, 
with an RMSD fluctuation of 0.378 Å and 0.444 
Å respectively.
 The  SN00305418 ,  SN00158342 
molecules found to be less stable during the 
simulation, with an RMSD fluctuation of 0.837 
Å and 0.602 Å respectively. The overall RMSD 
fluctuation of protein is more in comparison with 
other four protein ligand complexes(Fig. 3a).
RgValues of the cá backbone of target Proteins 
 The compactness of the protein-ligand 
complexes during the simulation was determined 
by measuring the values of Rg. The average values 
of Rg for the 4 compounds complexed with Pol 

â ranged from 22.177 to 22.636 Å. Rg of Pol â 
fluctuates more in comparison with other four 
protein ligand complexes. Suddenly the Rg value 
of Pol â increase after 80 ns of simulation(Fig. 3b).
RMSF Values of the cá backbone of target 
Proteins
 The average atomic mobility of the protein 
backbone during the MD simulations was measured 
using the values of RMSF. The average RMSF 
values of the 4 molecules complexed with Pol â 
ranged from 1.703 to 2.020 Å. Further analysis 
revealed that residues 203, 246 and 306 of Pol â 
underwent fluctuations.
 However, only two amino acid residues 
246, and 306 underwent fluctuations when 
complexed with SN00305418, SN00158342, 
SN00004251 and SN00341636. Residues Arg152, 
Asp160, Val 177, Thr201 Ser204, Lys206, 
Lys234, Thr233, Leu259, Glu295 and Glu329 
which were primarily involved in the formations 
of ligand–protein hydrogen bonds with four 
different chemical compounds, underwent minimal 
fluctuations. Similarly, the amino acid residues that 
mediated the formations of stacking interactions 
remained stable during the simulation(Fig. 3c).
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table 4. The two-dimensional structures and binding energies of four compounds against the target proteins

Molecular  Compound Name Chemical  Binding 
ID  Structure Energy
 

SN00305418 (E)-2-(1,3,4-trihydroxy-5-    -15.9181±4.5020
 ((3-(4-hydroxyphenyl)acryloyl)
 oxy)cyclohexyl)acetic acid 

SN00158342 (E)-5-((3-(3,4-dihydroxyphenyl)    -22.0327±3.8493
 acryloyl)oxy)-3,4-dihydroxycyclohex
 -1-enecarboxylate

SN00004251 N-(3-((2-amino-2-oxoethyl)    -29.7465±6.7833
 carbamoyl)-5,6-dihydroxycyclohex
 -2-en-1-yl)-2-bromobenzamide 

SN00341636 (E)-4,5-dihydroxy-6-(((Z)-8-hydroxy  -27.3184±5.1579
 -3,7-dimethylocta-1,6-dien-3-yl)oxy)
 -2-(hydroxymethyl)tetrahydro-2H-
 pyran-3-yl3-(4-hydroxyphenyl)acrylate

determination of binding Free energies of 
Protein-Ligand complexes
 The binding free energy represents the 
sum total of all the interaction energies, including 
the van der Waals energy, polar solvation energy, 
electrostatic energy, and solvent accessible surface 

area SASA energy. The binding free energies of 
all the complexes were estimated using the MM/
GBSA approach. The binding free energies of the 
four compounds complexed with Pol â ranged 
from -15.9181 to -29.7465 kcal/mol, of which 
SN00004251 (-29.7465±6.7833) had the lowest 
free energy of binding(Table 4).
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dIScuSSIon

 To find suitable inhibitors of Pol â, we 
start screening with a large number of natural 
molecules. The methodology employed involved 
a multi-step approach, starting with the screening 
of a vast library of natural compounds, followed 
by refinement based on pharmacokinetics, 
ADMET properties, and virtual screening. The 
meticulous selection process, involving the 
removal of compounds with potential toxicity 
and mutagenicity, led to a focused set of 1,104 
molecules for further structure-based virtual 
screening56. The homology modelling of Pol â 
demonstrated high-quality predicted structures, 
ensuring the reliability of subsequent analyses. 
The identification of key pockets on the protein 
surface using the Ghecom algorithm, especially 
the selection of the second-largest pocket within 
the catalytic domain, showcased a thoughtful 
approach to target selection. The subsequent virtual 
screening steps, involving two different servers 
(“EsayVS” and “DockThor”), as well as evaluation 
based on EC scores using Flare v5.0.0, highlighted 
the rigor applied to filter and prioritize potential 
drug candidates. The final selection, guided by a 
neural network considering six critical parameters, 
resulted in the identification of seven molecules for 
further investigation. 
 A Molecular Dynamics (MD) study for 
protein-ligand interaction involves simulating 
the dynamic behavior of molecules over time, 
particularly focusing on how a protein and a ligand 
interact with each other at the atomic level. MD 
simulations rely on mathematical models called 
force fields to describe the interactions between 
atoms within the molecules. Force fields include 
terms for bonded interactions (bonds, angles, and 
dihedrals) and non-bonded interactions like van 
der Waals forces and electrostatic interactions. 
Throughout the simulation, various parameters 
can be monitored and analyzed to understand 
the protein-ligand interaction dynamics. These 
include the root-mean-square deviation (RMSD) 
to measure structural changes, root-mean-square 
fluctuation (RMSF) to assess flexibility, hydrogen 
bonding patterns, solvent accessible surface area 
(SASA), and others. The findings from the MD 
simulation are interpreted to gain insights into the 
molecular mechanisms underlying the protein-

ligand interaction. This could involve identifying 
key protein-ligand interactions, understanding 
conformational changes induced by ligand binding, 
or proposing strategies for rational drug design, 
which provide a powerful tool for studying protein-
ligand interactions at an atomic level, offering 
insights that complement experimental techniques 
and guiding the design of novel therapeutics57-58. 
In this study, MD simulation was employed 
to simulate Pol â-phytochemical interactions 
over a period of 100 ns.  The root-mean-square 
deviation (RMSD), root-mean-square fluctuation 
(RMSF),radius of gyration (Rg), and molecular 
mechanics/generalized Born surface area (MM/
GBSA) energy were calculated for each Polâ-
phytochemical complexes in order to determine 
the most stable binding. After considerations of 
all parameters, four phytochemicalsSN00305418, 
SN00158342, SN00004251 and SN00341636 
were considered as most suitable molecules for 
inhibiting Pol âby binding its DNA binding domain.
 DNA polymerase â (Pol â) plays a 
vital role in base excision repair in the nucleus 
and mitochondria59. Pol â also contributes to 
double strand break repair viaanalternative 
nonhomologous end joining pathway26. DNA 
Pol â has two domains. A small 8 KDa domain 
involves DNA binding and dRP lyase activity. 
The large 31 KDa domain has dNTP selection 
and catalytic activity38. DNA repair pathways are 
often considered as a target 60,15,61 .Recent advances 
in research explore the opportunities to target 
Polâalong with DNA damaging agents62,63,64. In our 
previous study,we established a variant form of Pol 
â, which has a deletion in its catalytic domain and 
lacks polymerase activity, making it more sensitive 
to gamma radiations37. This variant retains its DNA 
binding domain intact. When a single-strand break 
or damaged base occurs, Polâbinds to the DNA. 
However, as the variant lacks catalytic activity, it 
cannot repair the damage, leading to subsequent 
cell death via an apoptotic pathway. Because Pol â 
has already bound to the DNA, other repair proteins 
like pol ä or pol å cannot function. Similar results 
were found in another study65. Bhatttachayya and 
Banerjee found a variant of Pol â with a deletion 
of 208–236 amino acid act as a dominant negative 
with wild type Pol â66. The variant lost its catalytic 
activity, whereas its DNA binding activity domain 
is remains intact. Wang et al. found that silencing 
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DNA polymerase â enhances the radio-therapeutic 
sensitivity of human esophageal carcinoma cell 
lines33. These results suggest that the lack of 
catalytic activity of DNA Pol â could lead a cell 
to undergo apoptosis following any single-strand 
break or damaged base. Therefore, in this study, we 
focus on a pocket within the catalytic domain of 
Pol â, specifically encompassing amino acids 151 
to 274.
 DNA damage is a common occurrence 
arising from various factors such as exposure 
to radiation, chemicals, and errors during 
DNA replication. Cells have evolved intricate 
mechanisms to detect and repair DNA damage, 
ensuring the maintenance of genomic stability67. 
The types of DNA damage encompass chemical 
modifications, physical lesions, and replication 
errors68.Detection of DNA damage involves the 
action of DNA damage sensors like ATM, ATR, 
and DNA-PK69. Cells employ diverse DNA repair 
mechanisms, including direct reversal, base 
excision repair (BER), nucleotide excision repair 
(NER), mismatch repair (MMR), homologous 
recombination (HR), non-homologous end joining 
(NHEJ), and translesion synthesis (TLS). Each 
repair pathway targets specific types of DNA 
lesions, ensuring the fidelity of the genetic material. 
Additionally, cell cycle checkpoints, governed by 
p53, play a crucial role in halting cell division to 
allow for repair or, if damage is irreparable, initiating 
programmed cell death through apoptosis69. Post-
repair surveillance mechanisms, orchestrated by 
p53, further contribute to the overall genomic 
integrity by regulating cell cycle progression and 
apoptosis based on the fidelity of the DNA repair 
processes. Understanding these DNA damage and 
repair mechanisms is pivotal for unravelling the 
complexity of cellular responses to genomic insults 
and holds significance for fields such as cancer 
research and therapeutic development70. 
 Overall, the study’s systematic approach, 
combining computational screening, molecular 
modeling, virtual screening, and MD simulations, 
contributes valuable information for the potential 
development of drugs targeting Pol â. The 
identification of specific compounds with favorable 
interactions and low binding free energies sets 
the stage for further experimental validation and 
optimization of these candidates for therapeutic 
purposes. The thorough analysis presented in 

this study lays a solid foundation for future drug 
discovery efforts targeting DNA polymerase â.

concLuSIon

 Four phytochemicals were identified 
against Pol â targets in its catalytic domain. These 
compounds had high binding affinities and low 
free binding energies, as indicated by the results of 
extensive in-silico analyses. According to the in-
silico study, The screened molecules demonstrate 
an ability to bind to the catalytic domain of Pol 
â. These molecules have shown promise for use 
as pharmaceuticals, potentially in conjunction 
with damaging agents, to treat cancer. The 
computational analyses conducted in this study 
has its own limitation, and therefore it will undergo 
experimental validation through both in vitro and 
in vivo studies in the future.
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