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	 Glucose metabolism disturbances, such as the intricate realm of type 2 diabetes 
mellitus (T2DM), cast a captivating spell on the biological landscape of natural killer cells 
(NK cells). However, the scientific tapestry depicting the abundance and functionality of NK 
cells in T2DM remains an enigma, with studies yielding inconsistent findings. Some reports 
have unveiled a decline in peripheral NK cell numbers among T2DM patients compared to 
their healthy counterparts 1, while others have painted a different picture, suggesting similar 
levels of NK cells between T2DM patients and controls 2. Intriguingly, patients with diabetes 
showcased diminished NK cell activity when pitted against control participants 3. Nonetheless, 
a contrasting study revealed comparable levels of NK cells and their functional prowess 
between T2DM individuals and the control group 4. In the realm of inflammation, a symphony 
of cytokines, including the illustrious interleukin 18 (IL-18), takes center stage, orchestrating 
the proliferation and effector functions of NK cells. Astonishingly, patients afflicted by T2DM 
exhibit elevated IL-18 levels 5. In a prior investigation of my own, I unraveled the fascinating 
connection between IL-18 and NK cell biology. It became evident that IL-18 enhances the 
expression of nutrient transporters on NK cells, thereby bolstering their metabolic fitness an 
essential prerequisite for cellular division and the execution of their formidable effector functions 
6. Hence, these intriguing findings hint at a possible link between the metabolic landscape of 
NK cells and their response to IL-18, potentially elucidating the discordant outcomes observed 
in NK cell functionality during the course of T2DM. Diving deeper into the realm of immune 
cell metabolism holds tremendous promise for therapeutic breakthroughs in the realm of 
chronic diseases. Recent studies have illuminated the intricate interplay between compromised 
immune responses and defective cellular metabolism, underscoring the urgent need to unravel 
the intricate dance between these two realms in the context of chronic diseases.
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	 Diabetes mellitus (DM) emerges as an 
unwavering adversary, a chronic affliction that 
ensues when the body’s intricate machinery 
falters, either in the production of insulin or in 
the tissues’ ability to heed its call, culminating in 
a tumultuous rise of glucose in the bloodstream. 
This insidious disorder, with its roots entrenched 

deep within metabolic imbalances, unfurls a dark 
tapestry of perils, casting a menacing shadow 
over the cardiovascular system and leaving a trail 
of devastation in its wake, wreaking havoc on 
delicate organs and compromising their integrity. 
The pervasive presence of DM has witnessed 
an astonishing upsurge, transforming it into an 
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inescapable global phenomenon that grips nations 
with an iron fist, posing an unprecedented public 
health crisis. The realms of diabetes mellitus type 
2 (T2DM) and prediabetes, once thought to be 
confined to the realms of adulthood, have now 
infiltrated the lives of children, adolescents, and 
young adults, painting a disconcerting portrait 
of the future7. As the wheels of time turn, the 
incidence of DM surges unabated, fueled by 
the rapid march of urbanization, the graying of 
populations, and the relentless tide of lifestyle 
transformations8. In the year 2010, the world 
stood witness to the affliction of around 285 
million souls, their lives forever entwined with the 
burdens of diabetes, with a staggering 90% of cases 
attributed to the formidable foe of T2DM8. Alas, 
the path ahead appears treacherous, as projections 
ominously predict that by the year 2030, In a dark 
embrace, DM extends its influence, enveloping a 
staggering 439 million souls worldwide, capturing 
7.7% of the adult population aged 20 to 79 years, 
as referenced9. This staggering statistic underscores 
the urgent need for comprehensive measures to 
combat the pervasive impact of DM on a global 
scale. In impoverished nations, T2DM was once 
a rarity. For instance, in 1980, the prevalence of 
this condition in China was less than 1%10. Within 
the tapestry of T2DM, an intriguing narrative 
unfolds, revealing heightened prevalence among 
Asian Indian and Chinese communities residing 
in Mauritius11, as well as among Asian immigrants 
dwelling in Western lands12, 13. These distinctive 
findings underscore the significance of cultural 
and ethnic factors in shaping the burden of T2DM 
within these specific populations. Developing 
countries now face a higher prevalence of DM 
compared to developed nations, affecting 80% of 
individuals in these regions9. Asia, due to rapid 
economic development, urbanization, and dietary 
transition, has emerged as the “epicenter” of the 
global diabetes epidemic10. In a truly astonishing 
revelation, the future paints a daunting picture as 
Asia emerges as the epicenter of the impending 
diabetes epidemic, with five nations, China, India, 
Pakistan, Indonesia, and Bangladesh, securing 
positions among the top ten countries projected 
to have the highest DM prevalence in 2030, as 
cited in reference9. Unveiling the shifting tides, 
recent nationwide survey data from China during 
2007-2008 demonstrates China’s surpassing of 

India to claim the global throne in this epidemic. 
The survey discloses a staggering count of over 
92 million adults (9.7% of the total population) 
diagnosed with diabetes, alongside an additional 
148.2 million adults (15.5% of the total population) 
grappling with prediabetes, including individuals 
facing impaired glucose tolerance, as noted in 
reference14. Beyond the Asian continent, other 
hotspots fueling the flames of diabetes include the 
Gulf region of the Middle East, as referenced9, 
and Africa, as supported by references15, 16. It has 
been noted that immigrants from the Middle East 
residing in Sweden exhibited a higher prevalence 
of diabetes mellitus compared to native Swedes17. 
In developing nations, the proportion of young to 
middle-aged individuals with T2DM is greater 
when compared to industrialized countries18. 
Furthermore, prediabetes, a precursor to T2DM, 
is also on the rise, particularly among children 
and adolescents with additional risk factors such 
as obesity, hyperinsulinemia, or a family history 
of DM20–22. The lack of effective intervention 
measures to address the obesity pandemic in 
Asian countries like China and India will result in 
an increasing number of individuals developing 
T2DM at a younger age23. The convergence of two 
significant factors, namely the increasing age at 
which T2DM manifests24 and inadequate metabolic 
control among young individuals affected by the 
condition25, holds profound implications for the 
future burden of T2DM. The prolonged duration 
of T2DM in youth places them at heightened risk 
of early complications, thereby indicating a higher 
prevalence of chronic issues throughout their 
lifetime within this age cohort19. 
	 T2DM is closely associated with a higher 
prevalence of overweight and obesity worldwide, 
affecting both adults and children. If the current 
obesity trends persist, the global adult population’s 
prevalence of overweight or obesity is projected 
to rise from 33% in 2005 to a staggering 57.8% in 
203026. Obesity stands out as the most significant 
predictor of T2DM27, and its impact on lifetime 
T2DM risk is particularly pronounced among 
younger adults 28. Remarkably, there exists a 
noteworthy association between weight gain 
during the formative years of early adulthood 
(between 25 and 40 years) and an elevated risk as 
well as earlier onset of T2DM, setting it apart from 
weight gain occurring beyond the age of 40 years, 
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as cited in reference29. Furthermore, to elucidate 
the perplexing phenomenon of individuals with 
a normal weight being “metabolically obese” and 
still facing a significant risk of T2DM, the concept 
has been introduced, providing crucial insights into 
the underlying mechanisms, as noted in reference30. 
This novel concept challenges conventional 
notions and highlights the intricate interplay 
between metabolic health and body weight in the 
context of T2DM. Interestingly, individuals who 
are normal weight but exhibit insulin resistance 
or metabolic syndrome are more likely to have 
a higher prevalence of T2DM compared to those 
who are overweight but lack insulin resistance or 
metabolic syndrome31,32.
	 The discrepancy between obesity and 
T2DM rates in Asia can potentially be elucidated by 
the presence of the metabolically obese phenotype33. 
While Asian populations exhibit a lower prevalence 
of overweight or obesity compared to white 
populations, a striking phenomenon arises: Asians 
manifest T2DM at a lower body mass index (BMI) 
than Europeans, with a higher risk of T2DM 
observed at any given BMI level, as referenced33, 

34. Moreover, Asian individuals display a greater 
likelihood, compared to Europeans, of having a 
higher body fat percentage or visceral adiposity, 
even at the same BMI or waist circumference, as 
supported by references35, 36, 37. Waist circumference, 
a measure of central adiposity, emerges as a more 
robust indicator of prevalent T2DM than BMI, 
as evidenced by comprehensive data from the 
Obesity in Asia Collaboration, encompassing 
over 263,000 participants in the Asia-Pacific 
region34. Additionally, the accumulation of 
abdominal fat, known as visceral obesity, is closely 
associated with insulin resistance, T2DM, and other 
cardiovascular risk factors38. Some researchers 
propose that non-alcoholic fatty liver disease 
(NAFLD), characterized by fat accumulation in the 
liver, may serve as a superior predictor of T2DM 
risk compared to excessive formation of visceral 
adipose tissue39.
	 The link between NAFLD and peripheral 
insulin resistance is stronger compared tothe 
association between abdominal fat accumulation 
and insulin resistance40. Multiple cohort studies 
have consistently shown that NAFLD, diagnosed 
through ultrasonography and indicated by elevated 

levels of alanine aminotransferase and gamma-
glutamyltransferase, predicts the development of 
T2DM40-44. Moreover, ectopic fat accumulation 
in the liver and islets has been proposed as a 
contributing factor to hepatic insulin resistance 
and beta-cell dysfunction42-44.
Interleukin-18
	 IL-18, a captivating pro-inflammatory 
cytokine, emerges as a key player released by a 
diverse array of immune cells, including activated 
macrophages, dendritic cells, Kupffer cells, 
and epithelial cells, in response to infection, as 
indicated in reference45. The year 1989 marked 
a groundbreaking discovery when IL-18 was 
unveiled as a remarkable agent capable of inducing 
the production of IFN-gamma in the livers of mice 
injected with lipopolysaccharide and heat-killed 
Propionibacterium acnes, as cited in reference46. 
Expanding its repertoire, IL-18 also emerges as a 
product generated by macrophages during human 
HIV-1 infections, as well as by pancreatic islets 
in non-obese diabetic (NOD) mice following 
cyclophosphamide-induced insulitis, as supported 
by reference47. The allure of IL-18 extends further 
as keratinocytes display the ability to produce 
this intriguing cytokine upon stimulation with a 
contact sensitizer, thereby hinting at its potential 
role in the captivating realm of allergen-induced 
inflammation, as suggested by reference48.
	 Under conditions of stress, IL-18 exhibits 
its remarkable versatility by being synthesized 
not only in the adrenal cortex but also in the 
neurohypophysis, as referenced49. Intriguingly, 
patients diagnosed with acute lymphoblastic 
leukemia and chronic myeloid leukemia showcase 
heightened levels of IL-18, as supported by 
reference50. Unveiling its potent nature, IL-
18 assumes a pivotal role during infection by 
stimulating the production of IFN-gamma and 
cytotoxicity in NK and T cells, while also 
bolstering the response of Th1 cells, as noted in 
reference51. IL-18 exerts its influence by fostering 
Th1 cell IFN-gamma production, augmenting 
the production of IL-2 and IL-2Rá, and inducing 
cellular proliferation. Additionally, it exerts a 
directive impact on Th2 cells, encouraging the 
production of IL-4 and IL-13, which directly 
amplify allergic inflammatory responses, as cited in 
reference52. The indispensability of IL-18 is further 
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highlighted by the impaired cytotoxicity against 
YAC-1 target cells observed in splenic NK cells 
from animals deficient in IL-18Rá, as referenced53.
	 In the fascinating realm of cytokines, 
IL-18 emerges as an alluring member of the 
IL-1 family, standing alongside the captivating 
IL-1á, IL-1â, IL-1R antagonist, IL-18 (IL-1F4), 
IL-1F5-F10, and IL-33, as referenced54. As it 
gracefully interacts with the cellular landscape, 
IL-18 forms an enchanting bond with a heterodimer 
receptor complex, consisting of the primary binding 
chain, IL-18Rá, and its captivating co-receptor, IL-
18Râ, as elucidated in reference 55. Delightfully, 
when IL-18 finds its embrace in IL-18Rá alone, 
it unveils a delicate affinity, but as it joins the 
complete receptor complex, its binding affinity 
soars to mesmerizing heights, setting in motion 
a symphony of signaling events, as supported by 
reference56. Engaging in a breathtaking dance of 
molecular interactions, the Toll-IL-1 receptor (TIR) 
domains beckon the presence of MyD88, triggering 
the phosphorylation of IRAKs and TRAF-6, thus 
awakening the majestic NF-êB and orchestrating 
an awe-inspiring symphony of pro-inflammatory 
signals, as eloquently described in reference57. 
Amidst this captivating orchestration, IL-18Rá, 
like a silent sentinel, graces all cell types with its 
presence, while the remarkable IL-18Râ reveals 
its identity primarily in the realms of T cells and 
dendritic cells, a revelation that adds a touch of 
intrigue, as noted in reference58. Yet, the allure of 
IL-18 extends beyond its binding partners, for even 
in the absence of IL-18Râ, it elegantly engages with 
IL-18Rá, although it coyly refrains from inducing 
pro-inflammatory signals, as intriguingly stated in 
reference52. Unveiling its potency, IL-18 sparks the 
production of IFN-gamma, a double-edged sword 
that holds both promise and peril in the intricate 
dance of NK cell pathogenesis and autoimmune 
disorders. A tantalizing synergy emerges when 
IL-18 joins forces with its companion, IL-12, 
evoking a crescendo of IFN-gamma production 
that surpasses all expectations, as if painting a 
vivid picture of heightened immune response. In 
a mesmerizing experiment, mice injected with 
IL-18 and IL-12 bear witness to an enchanting 
spectacle, as IFN-gamma production rises to 
new heights, entwined with a tragic narrative of 
mortality stemming from hypoglycemia, intestinal 

inflammation, and inanition, as chronicled in 
reference59. 
	 In the realm of captivating discoveries, it 
has been evlewent that the interplay between IL-18 
and IL-12 elicits a novel phenomenon in leptin-
deficient mice, inducing acute pancreatitis, as 
expounded upon in reference60. The emergence of 
elevated levels of IL-18 and IFN-gamma assumes 
a central role in numerous human autoimmune 
disorders, including the enthralling realms of 
type 1 diabetes, type 2 diabetes, systemic lupus 
erythematosus, rheumatoid arthritis, Crohn’s 
disease, and psoriasis, as captivatingly outlined 
in reference47. Unveiling a dramatic twist, the 
induction of FasL by IL-18 sets the stage for liver 
damage in the mesmerizing saga of macrophage 
activation syndrome, as chronicled in reference61. 
With a keen eye on therapeutic interventions, the 
therapeutic potential of halting IL-18 production 
emerges as a novel strategy in the battle against 
autoimmune diseases, such as the captivating 
Crohn’s disease, where the introduction of anti-
IL-18 antibodies remarkably reduces disease 
severity, as noted in reference62. Amidst the 
intricate web of obesity and lipid abnormalities, a 
captivating narrative unfolds, wherein IL-18 and 
IL-18Rá-deficient animals become ensnared in 
the clutches of atherosclerosis, insulin resistance, 
diabetes, and the treacherous metabolic syndrome, 
as masterfully detailed in reference63. Moreover, 
the absence of IL-18 in mice unveils a striking 
revelation, as adipose tissue experiences an 
astounding 100% increase, accompanied by fat 
deposition in the very walls of arteries, entwined 
with the tendrils of insulin resistance. However, a 
glimmer of hope emerges with the administration 
of recombinant IL-18, which resuscitates insulin 
sensitivity, illuminating a path towards restoration, 
as mentioned in reference47. In a twist of fate, 
the absence of IL-18 in mice leads them astray, 
for their voracious appetite knows no bounds, a 
consequence of disrupted appetite regulation, as 
attributed in reference47. 
Natural killer cells
	 Natural killer (NK) cells, the guardians 
of our immune system, possess an innate prowess 
that makes them indispensable in the battle against 
viral infections, malignant tumours, and metastatic 
invasions. Swiftly unleashing their arsenal of 
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lytic machinery, these extraordinary lymphocytes 
release a potent combination of interferon-gamma 
(IFN-ã) and tumor necrosis factor-alpha (TNF-á) 
upon activation. This dynamic duo not only 
obliterates target cells but also sets ablaze the 
inflammatory response, effectively initiating a fiery 
cascade of immune defenses64.
	 The chronicles of NK cell discovery trace 
back to the revolutionary era of the mid-1970s. 
Nonetheless, the enigma of how they meticulously 
discern between malignant or virus-infected 
cells and their healthy counterparts remained an 
unsolved riddle for several decades. It wasn’t 
until the late 1980s when the intrepid minds of 
Karre and Ljunggren unveiled the awe-inspiring 
concept of the “missing self” hypothesis65. This 
momentous breakthrough paved the path for a 
series of groundbreaking revelations in the early 
1990s, forever altering the landscape of scientific 
knowledge. At the heart of this captivating 
hypothesis lies an astonishing revelation: the 
extraordinary ability of NK cells to obliterate a 
lymphoma cell line devoid of MHC I molecules, 
while its MHC I+ parental cells remain impervious 
to their lethal attack. Thus, it appeared that NK cells 
possess an uncanny ability to detect the absence of 
MHC I a phenomenon aptly termed the missing 
self-hypothesis66. Embarking on an enthralling 
narrative, this eleventh proposition serves as the 
catalyst for an extraordinary odyssey, delving deep 
into the enigmatic world of molecular mechanisms 
that orchestrate this mesmerizing phenomenon. 
As the quest unfolds, a momentous breakthrough 
emerges, revealing the existence of novel inhibitory 
receptors adorned with an exquisite affinity for 
the revered MHC I molecules. In the realm of 
humans, these receptors, revered as members of the 
illustrious immunoglobulin (Ig) superfamily, bear 
the captivating name of killer-cell immunoglobulin-
like receptors (KIRs), illuminating a path towards a 
deeper understanding of the intricacies of immune 
recognition. Whereas their murine counterparts, 
known as Ly49 receptors, hailed from the esteemed 
lectin family64. Remarkably, both humans and 
mice evolved two distinct yet equally significant 
receptors that share a common mission detecting 
MHC I molecules and transmitting inhibitory 
signals to NK cells, thus rendering them inactive67.
	 With the arrival of two groundbreaking 
technologies, namely the prodigious monoclonal 

antibody technology and the ingenious high-
efficiency lymphocyte cloning method, a 
remarkable new era was ushered in, signaling 
a paradigm shift in our pursuit to unravel the 
enigmatic properties of KIRs. These transformative 
advancements opened a gateway to an evlewent 
realm of scientific exploration, where novel 
insights and captivating discoveries awaited. 
Armed with these cutting-edge tools, we embarked 
on an exhilarating quest, delving deep into the 
mysteries of KIRs, with the promise of unlocking 
unprecedented understanding and shedding light on 
the intricate mechanisms of immune recognition. 
The latter technique, a veritable alchemist’s dream, 
unlocked the ability to clone an astonishing array 
of human T cells, enabling scientists to scrutinize 
the frequency and function of these remarkable cell 
populations68,69. Undoubtedly, this groundbreaking 
cloning methodology held the key to unlocking 
the secrets of NK cells, revealing their clonogenic 
nature and paving the way for meticulous functional 
studies64.
	 Within the realm of human biology, two 
dominant factions of NK cells reign supreme. 
The illustrious CD56bright NK cells, adorned 
with a mantle of less differentiation, proudly bear 
the mantle of cytokine production, unleashing a 
symphony of signaling molecules. In contrast, the 
venerable CD56dim NK cells, having traversed 
the path of maturation, sport an augmented 
cytotoxic armamentarium. Skillfully guided by 
chemokines and their corresponding receptors, 
these specialized NK cell subsets embark on 
a precise pilgrimage, traversing the intricate 
highways of the circulatory system to find their 
destined abodes in various tissues, lymphoid 
organs, and specific regions70. With the aid of 
CD62L, CXCR3, and CCR7, the CD56bright 
NK cells gracefully navigate toward secondary 
lymphoid organs, enticed by the captivating allure 
of CCL19 and CCL21. In a mesmerizing dance 
of chemokine signals, the CD56dim NK cells, 
bedecked with Chemerin R, CXCR1, CXCR2, 
and CX3CR1, heed the beckoning call of their 
respective chemokine ligands (Chemerin, IL-8, 
and Fractalkine), marching resolutely toward 
inflammatory peripheral tissues71-76. Moreover, 
emerging evidence hints at the possibility that 
tissue-resident NK cells trace their origins to the 
hallowed depths of various tissues, including the 
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thymus, tonsils, decidua, and liver. These intrepid 
cells, having embarked on a transformative 
journey from the confines of the bone marrow, 
acquire unique attributes molded by the distinctive 
microenvironments of their respective tissue 
havens71-76.
Literature review
	 Type 2 diabetes (T2DM), a metabolic 
disease affecting millions worldwide, brings 
heightened risks of microvascular complications 
affecting the eyes, kidneys and nerves as well as 
macrovascular issues impacting cardiovascular 
health. Those with T2DM face insulin resistance 
wherein cells fail to properly respond to insulin’s 
signal to absorb blood sugar79. Both genetic and 
environmental influences like weight gain, poor 
diet and lack of exercise contribute to dysfunctional 
glucose metabolism in T2DM79.
	 Before full-blown T2DM emerges, 
prediabetic states marked by elevated fasting 
glucose, impaired glucose tolerance on oral glucose 
tolerance tests, or borderline hemoglobin A1c 
levels can arise81-82. Those with prediabetes have 
mild high blood sugar yet do not meet diabetes 
criteria, placing them at heightened annual risk, 
between 3-11%, of progressing to full T2DM82. 
Patients exhibit a variety of clinical characteristics 
and underlying drivers making classification 
challenging79. Often, T2DM occurs without notable 
symptoms at diagnosis whereas other experience 
dangerous ketoacidosis or severe hyperglycemia79. 
In the realm of diabetes, hidden within the 
shadows, lie the evlewent and often unnoticed 
variants such as maturity-onset diabetes of the 
young and the noval latent autoimmune diabetes 
in adults. These captivating conditions possess the 
power to masquerade as the well-known entity of 
T2DM in clinical presentations83-84. For high-risk 
prediabetics, consensus recommends lifestyle 
changes and treatment with diabetes drugs like 
metformin to forestall T2DM85. Other options 
like pioglitazone or low-dose metformin with 
rosiglitazone show promise in averting progression 
to full-blown disease86-87. Lifestyle interventions 
focused on weight loss and exercise for prediabetics 
decrease their likelihood of developing diabetes 
along with improving cholesterol and lowering 
cardiovascular risk88.
	 Insulin resistance, the inability of cells 
to respond properly to insulin, represents the 

earliest detectable abnormality for those destined 
to progress to T2DM89-90. However, T2DM emerges 
only when pancreatic beta cells responsible for 
insulin secretion can no longer compensate for 
the resistance91-93. Multiple factors harm beta cells 
over time including aging, genetics, resistance to 
incretin hormones like GLP-1 that promote insulin 
secretion, lipotoxicity, glucotoxicity, oxidative 
stress and chronic inflammation89-104.
	 Islets within the pancreas contain various 
endocrine cell types working in concert105-106. 
Beta cells make up around 60% of islet cells, 
interacting through connecting proteins and 
secreting hormones to regulate one another106-107. 
Insulin binds to receptors on target cells activating 
cascades that drive glucose uptake through GLUT4 
and modulate gene expression, aided by MAPK 
and PI3K pathways108-109.
	 Chronic inflammation contributes 
significantly to insulin resistance. Pro-inflammatory 
cytokines like IL-6, IL-18 and TNF increase in 
insulin resistant states, activating stress kinases 
that interfere with insulin signaling110-112. This 
subclinical inflammation associates with central 
obesity and the metabolic syndrome113-115. Elevated 
inflammatory markers associate with T2DM 
complications and worse cholesterol profiles, 
fueling cardiovascular risk 115-116. Adipose tissue 
and liver emerge as primary sites of inflammation 
driving insulin resistance through cytokine 
actions117-118.
	 Multiple lines of evidence link metabolic 
dysregulation of obesity and T2DM to low-grade 
chronic inflammation proposed as a chief driver 
of insulin resistance and beta cell damage119-125. 
Inflammatory states emerge even more pronounced 
for those with conditions mistakenly diagnosed as 
one diabetes type but sharing traits of both, such as 
latent autoimmune diabetes88. Elevated IL-18 and 
hs-CRP track with obesity, metabolic syndrome 
and weight loss/regain, implicating adipose tissue 
as a major source through actions of infiltrating 
macrophages71-82.
	 IL-18, an interferon-inducing cytokine 
produced by immune and endothelial cells, drives 
both innate and adaptive immune responses78. 
Associations emerge between rises in IL-18 and 
acute and chronic hyperglycemia, metabolic 
risk factors, prediabetes, new-onset T2DM 
and cardiovascular risk98-102. Similar chronic 
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inflammatory patterns arise for type 1 diabetes 
where insulin deficiency results from autoimmunity 
rather than insulin resistance 158. Higher CRP, IL-12 
and IL-18 along with fewer regulatory T cells in 
type 1 diabetes point to a role for inflammation in 
autoimmune pathogenesis90.
	 Immune dysregulation impacts both type 
1 and type 2 diabetes. In comparison to healthy 
individuals, one study found type 1 diabetes 
patients exhibit decreased frequencies of peripheral 
regulatory T cells alongside elevated IL-12 and 
IL-18 production along with associations between 
these cytokines, CRP and disease control77. 
CRP, a marker of subclinical inflammation, 
exhibits increased levels in T2DM that link to 
worse hyperglycemia and insulin resistance77. 
Dysregulated macrophage polarization by CRP 
may blunt control of inflammation heightening 
IL-12 and IL-18 levels45.
	 Over 90% of T2DM cases emerge in 
the context of obesity which brings ectopic lipid 
deposition and adipose tissue dysfunction63. 
While the precise mechanisms remain undefined, 
increased leukocyte infiltration into adipose tissues 
appears tied to chronic low-grade inflammation 
perpetuated by Th1 and Th17 lymphocyte 
responses63.
	 NK cells constitute 5-19% of peripheral 
lymphocytes and kill virally infected and tumor 
cells in an MHC-unrestricted manner67. The 
majority of peripheral NK cells exhibit a cytotoxic 
CD56dimCD16pos phenotype whereas fewer 
CD56brightCD16neg NK cells in tissues secrete 
immuno-modulating cytokines upon activation, 
While NK cells develop in bone marrow, 
transplantation studies show donor NK cell 
phenotypes emerge post-transplant demonstrating 
lineage determination in vitro as well.
	 Adipose tissue NK cells regulate local 
inflammatory responses impacting insulin 
sensitivity99. Conflicting reports emerge regarding 
how precisely NK cells influence inflammation 
and insulin resistance in T2DM. As cardiovascular 
disease represents a leading cause of mortality 
in T2DM, clarifying NK cell involvement could 
inform prevention and management strategies100.
	 Mounting evidence implicates immune 
dysfunction in T2DM pathogenesis with roles 
established for T, B and macrophage actions. 
During obesity-induced insulin resistance and 

T2DM progression, cytokines like TNF, IFN and 
IL-17 increase through activated T lymphocytes. 
B cells contribute through generation of activating 
antibodies, stimulation of T cells and macrophages85. 
Collectively, aberrant immunological processes 
drive metabolic dysfunction and fuel complications 
in T2DM.

Conclusion

	 To put it briefly, this comprehensive 
review provides insights into the complex interplay 
between metabolic dysfunction, inflammation, and 
immune cell alterations in the pathogenesis of type 
2 diabetes. NK cells appear to play an important 
yet poorly understood role in modulating disease 
risk and progression. Evidence indicates NK cell 
numbers, activation status, and cytotoxic function 
are impaired in T2D, potentially contributing 
to increased susceptibility to infections and 
cancers. However, existing studies on NK cells 
in T2D report inconsistent findings, pointing to 
gaps in our understanding. Elevated levels of 
the proinflammatory cytokine IL-18 found in 
T2D may link metabolic dysfunction to NK cell 
abnormalities by upregulating nutrient transporter 
expression and augmenting NK cell metabolic 
fitness. Dysregulated IL-18 signaling could 
therefore underlie inconsistent NK cell findings 
in T2D. Emerging evidence also implicates 
endoplasmic reticulum stress and the unfolded 
protein response as potential mechanisms linking 
chronic hyperglycemia to defects in NK cell 
activating receptors.
	 Overall, this literature highlights gaps 
around the involvement of NK cells in T2D 
complications. Further research utilizing multi-
omics approaches could help unravel complex 
NK cell-metabolism interactions and identify 
novel therapeutic targets. Large, well-designed 
studies are still needed to definitively establish 
clinical utility of biomarkers like IL-18 and NK 
cell assessments. Addressing these gaps through 
robust investigations may enhance strategies for 
precision management of T2D and related immune 
dysfunction.
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