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 N-nitrosamines, recognized as potentially fatal and likely human carcinogens, have 
been detected in various medications, including antidiabetic drugs and Histamine-2 receptor 
blockers, particularly those with specific amine structures. This contamination has prompted 
regulatory bodies to implement rigorous testing and mitigation strategies to safeguard public 
health. This review offers a concise overview of nitrosamine impurities, their precursors, 
affected medications, and associated health risks. Current regulations stress the need for robust 
analytical procedures to detect and mitigate nitrosamines, such as using nitrite scavengers in 
oral medications. Despite these efforts, challenges remain in accurately assessing risks and 
integrating effective detection methods. Key findings indicate a need for continuous monitoring, 
advancements in detection technologies, and the development of comprehensive risk assessment 
frameworks. Recommendations include adopting proactive risk management strategies, 
enhancing industry collaboration for better data sharing, updating regulatory guidelines, and 
incorporating country-specific risk mitigation efforts to address emerging threats effectively.

Keywords: Analytical Method; Carcinogenic nitrosamine impurities;
Nitrosamine formation; Nitrite scavenger; Risk Evaluation.

 Since July 2018, global regulatory 
agencies have flagged angiotensin II receptor 
blockers (ARBs)due to suspected contamination 
with nitrosamines, including the carcinogen 
N-nitroso dimethylamine (NDMA) found 
in valsartan1. As a result, the Food and drug 
administration (FDA) in the United states 
(US) issued voluntary recalls, and recalls were 
implemented widely throughout Europe. Next, 
it was discovered that losartan and valsartan 

contained N-nitrosoN-methyl-4-aminobutyric acid 
(NMBA) and N-nitrosodiethylamine (NDEA), 
respectively. Efforts are underway to investigate 
nitrosamine contamination in ARB formulations, 
with concerns centered around tetrazole formation 
during Active Pharmaceutical Ingredient (API) 
production. The contamination issue has extended 
to other drugs like ranitidine and metformin, where 
NDMA contamination led to market withdrawal 
of ranitidine in 2020  2,3. Ranitidine’s NDMA 
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levels    can increase over time, especially at higher 
temperatures. Metformin’s NDMA contamination 
is likely due to finished  product degradation under 
specific conditions 4.
Brief  Evolution of  the Generation of 
N-Nitrosamines in Pharmaceutical Products
 Concerns about N-nitrosamines (NAs) 
began in the late 1800s, but their dangers became 
evident in 1954, leading to their classification 
as carcinogens in 1970. They are now found in 
tobacco, food, medicine, and possibly the gut 5 

. International council for harmonization (ICH) 
guideline M7R1confirmed this classification, 
classifying N-nitrosamines and their precursors as 
members of a “cohort of concern” because of their 
high mutagenic potency. Significant drug recalls 
involving N-nitrosamine have occurred in recent 
years 6. The recalls included valsartan, angiotensin II 
receptor antagonists, anti-diabetic medications, and 
ranitidine due to harmful impurities7. Regulations 
to prevent such contamination were incorporated in 
replies from regulatory agencies like the European 
medicine agency (EMA) and FDA 8,9. Additionally, 
research on the use of nitrite scavenger’s dates 
back to the 1960s, when it was discovered that 
ascorbic acid might decrease the formation of 
N-nitrosamines by converting nitrous acid more 
precisely, the anhydride Dinitrogen trioxide (N2O3) 
to Nitric oxide (NO) 10. Studies carried out in the 
1970s focused on inhibiting agents, namely the 
interaction between ascorbic acid and nitrite, in 
order to reduce nitrosation 11. This preventive 
measure was tested in various pharmaceutical 
systems, including piperazine and tetracycline 
drugs, to reduce nitrosamine synthesis12.
Potential origins of nitrosamine impurities in 
pharmaceuticals
Angiotensin II receptor blockers (ARBs)
 Nitrosamine impurities in ARBs, 
particularly tetrazole-based ones like losartan 
and valsartan, result from nitrosation during API 
production, often linked to recycled catalysts or 
solvents. Non-tetrazole ARBs, like telmisartan 
and eprosartan, are less affected 13. To avoid using 
hazardous hydrazoic acid, azides and nitriles can 
be converted into a tetrazole ring through a [1 + 3] 
cycloaddition process14. The formation of tetrazole 
using azide reagents is typically carried out in the 
concluding stage of sartan synthesis 15 . Despite 
their human health hazards, organometallic azide 

derivatives like trimethyltin azide (Me3SnN3) 
and tributyltin azide (BuSnN3) and sodium azide 
(NaN3) are preferred as azide reagents because 
they are easy to handle and dispose of. Sodium 
nitrite is usually added in an acidic environment 
to neutralize any unreacted azides that remain after 
the tetrazole production process16. The disposal 
of alkyl amine residues, unreacted azides, or 
contaminated solvents can unintentionally form 
nitrosamines, posing a contamination risk. The 
recall of valsartan, the first ARB with NDMA 
presence, was linked to NDMA forming from 
dimethylamine (DMA), a residual impurity in N,N-
dimethylformamide (DMF) used in API synthesis17. 
During ARB production, DMF can degrade into 
dimethylamine (DMA), while triethylamine (TEA) 
used in losartan synthesis may be contaminated 
with diethylamine (DEA), which is linked to the 
presence of NDEA 18  which is a known precursor 
of NDEA as reported previously. Additionally, 
TEA can undergo direct dealkylation to form DEA 
when exposed to nitrous acid or nitrite, as shown 
in Figure 1. Additional nitrosamine compounds 
include N, Nitrosodiisopropylamine (NDIPA), 
NMBA and N- nitrosoethylisopropylamine 
(NEIPA) have also been detected in ARBs in 
addition to NDEA. Initially, NMBA contamination 
was detected in both irbesartan and losartan. 
The precursor of NMBA is N-Methyl amino 
N-butyric acid (MBA), that might develop 
as a result of N-methylpyrrolidinone (NMP) 
deterioration, an organic solvent utilized during 
tetrazole synthesis. N-ethyl N-isopropylamine  
(EIPA) and N,N  -diisopropylamine (DIPA), 
which act as the corresponding precursors of 
NEIPA and NDIPA, are examples of dealkylative 
compounds that can be produced from NDEA, N,N 
-diisopropylethylamine (DIPEA), a frequent base 
in API synthesis. Tetrazole-containing ARBs may 
be contaminated with various nitrosamines due to 
different amine reagents used in their synthesis. 
Risk assessments and manufacturer recalls have 
identified azido impurities as novel by-products, 
although the nitrosamine issue has not been 
fully resolved 19. Azido impurities, specifically 
4- (azidomethyl)-[1,10-biphenyl]-2-carbonitrile 
and 5-(4'-(azidomethyl)-[1,10-biphenyl]-2-yl)-
1H-tetrazole (AZTT), arise from a secondary 
reaction between sodium azide and the left-over 
intermediates from the step before it. ARB 
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medications with azido impurities, like losartan 
forming AZTT, have led to recalls by the Canadian 
FDA. To reduce nitrosamine contamination, 
avoiding nitrosating agents is advised. China uses 
a risky hydrogen peroxide quenching method for 
losartan, while triaryl phosphine can alternatively 
remove residual azides via the Staudinger 
reaction 20. In a European patent, the utilization of 
triphenylphosphine for azide quenching has been 
described as a method for in-process remediation 21. 
Triphenylphosphine reacts with an azide to form a 
phosphazide intermediate, which releases nitrogen 
(N2) to generate iminophorane. An aqueous workup 
then yields amine derivatives and phosphine oxide. 
To prevent nitrosamine contamination during 
ARBs synthesis, use minimal triphenylphosphine 
instead of sodium nitrite for azide removal.
Histamine -2 (H2) receptor antagonists
 NDMA, associated with the ozonation and 
chlorination processes, raises environmental 
issues 22. Efforts to remove NDMA revealed 
a link between ranitidine and NDMA during 
wastewater treatment. The dimethylamine side 
chain and nitro group in nizatidine and ranitidine 
are associated with increased NDMA formation 

23. Ranitidine can produce NDMA directly, while 
its impurities release NDMA at a notably faster 
rate. The proposed mechanism involves impurity 
degradation, inherent instability of the API, and 
contamination during the manufacturing process 

24 . Shown in figure 2.

 Ranitidine’s NDMA contamination 
increases with storage time and temperature, 
with a strong link between ranitidine, DMA, and 
NDMA formation, raising potential cancer risks 

25. Controlling and keeping an eye on stability-
related parameters including temperature, light, 
and humidity during drug production and storage is 
advised as a solution to this problem 26. Ranitidine’s 
temperature-dependent NDMA production requires 
controlled storage: 2-8°C for parenteral forms 
and below 25°C for solid forms. Regular NDMA 
level checks during storage are advised, and a 
comprehensive strategy to assess and mitigate 
NDMA risks in ranitidine is essential for safety.
Anti-diabetic drugs
 Metformin, a guanidine derivative like 
dimethyl guanidine, lacks a nitro group unlike 
ranitidine. Thus, nitrosamine synthesis requires an 
external nitro-sating agent 27. 

 Health officials are concerned about 
NDMA contamination in metformin, linked to 
environmental factors and insufficient breakdown 
mechanisms (Figure 3). A 2019 study identified 
degradation by-products, and the FDA found 
excess NDMA in 2020  28  Top of FormBottom 
of Form.  Nitrosation during wet granulation 
and drying can cause NDMA contamination in 
tablets. Avoiding nitrate-containing excipients and 
implementing strict quality control for metformin 
and pioglitazone is essential to protect patient 
safety.

Fig. 1. Possible root causes of nitrosamines and azido impurities in angiotensin II receptor blockers
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Antimicrobial agents
 In August 2020, the FDA detected 
nitrosamine impurit ies 1-cyclopentyl-4-
nitrosopiperazine (CPNP) and 1-methyl-4-
nitrosopiperazine (MNP) in rifapentine and 
rifampin (Figure 4), used for tuberculosis. CPNP 
likely forms during rifapentine synthesis, while 
MNP’s source remains unclear, possibly linked to 
rifampicin. Many US products exceed acceptable 
nitrosamine limits, with CPNP in rifapentine at 
0.1 ppm and MNP in rifampin at 0.16 ppm. The 
FDA set higher limits (20 ppm for CPNP and 5 
ppm for MNP) to ensure drug availability, while 
Singapore’s Health Sciences Authority (HAS) 
approved rifampin with trace MNP.
 Nitrosamine toxophores generally 
imply lower carcinogenicity than NDMA29. 

NDMA’s interim Acceptable Intake (AI) replaces 
strict limits, requiring manufacturers to prevent 
contamination and regulators to enforce oversight. 
Rifapentine and Rifampicin may be contaminated 

with CPNP and MNP via nitrosating chemicals 
reacting with piperazine 30.  This  emphasizes Strict 
quality control is vital for detecting and removing 
contaminants that endanger patient safety during  
pharmaceutical production.
Other Medicine
 Nitrosamine detection in ARBs has 
highlighted tetrazole-containing drugs, like sartans, 
as prone to contamination, affecting medications 
like ceftezole and letrozole, leading to shortages, 
treatment changes, and wastewater concerns 

31.Chloramine disinfection can lead to nitrosamine 
formation,32 in APIs like nizatidine, ranitidine, 
clarithromycin, metformin, and others. Lidocaine 
may be contaminated with NDEA. Ozonation in 
sewage treatment helps minimize NDMA formation 
by facilitating N-oxide production through electron 
donation 33. Nitrosamine formation in wastewater, 
linked to amine-based medicines, challenges drug 
manufacturers to ensure medication safety through 
rigorous risk assessment and quality control.

Fig. 2. Possible root causes of N-nitroso dimethylamine (NDMA) contamination in ranitidine and nizatidine and 
their pharmaceutical products
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Fig. 3. Possible root causes of N-nitroso dimethylamine (NDMA) contamination in metformin and its 
pharmaceutical products

Fig. 4. Potential root causes of contamination with MNP in rifampin and CPNP in rifapentine

Amines as N-Nitrosamine Precursors
 Nitrosamines in pharmaceuticals are a 
critical concern due to their carcinogenic potential. 
They can originate from APIs, solvents, reagents, 
and degradation during storage. Nitrosamines form 
via nitrosation of amines by nitrosating agents, with 
formation influenced by pH, strong acids reduce 
reactivity and nitrosamine levels, while very low pH 
decreases nitrosation. Common nitro-sating agents 
include Nitrous acid (HNO2), nitrite (NO2), N2O3, 
Dinitrogen tetroxide (N2O4), Nitrosyl Chloride 

(NOCl), nitrosonium tetrafluoroborate (NOBF4), 
and nitro thiocyanate (CN2OS). Controlling these 
conditions can significantly reduce nitrosamine 
formation, ensuring product safety and regulatory 
compliance34.
 Nitrosation Mechanisms for Different 
Amines (Figure 5)
Primary Amines
 The compound is susceptible to undergoing 
nitrosation, a chemical process where it reacts 
to form unstable N-nitroso compounds. These 
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Fig. 5. Pathways of nitrosamine formation between nitrosating agents and primary, secondary, tertiary amines and 
quaternary amines.

compounds can subsequently decompose into 
diazonium salts which are reactive intermediates 
in various chemical reactions.
Secondary Amines
 Convert to nitrosamines more promptly, 
making them the most reactive in forming 
nitrosamine contaminants.
Tertiary amines
 This compound can react with nitrites to 
form N-nitrosamines, following dealkylation to 
produce secondary amines 35.
Geno toxicity and carcinogenicity in nitrosamines
 Nitrosamine contaminants, such as 
NDEA, present genotoxic risks in pharmaceuticals 
and are bioactivated by CYP2A6 and cytochrome 
P450 enzymes 36. CYP2E1 converts nitrosamines 
into á-hydroxy nitrosamine, forming alkylating 
electrophiles that bind Deoxyribonucleic acid 

(DNA) and proteins, creating adducts37,38. Alkylating 
agents target DNA’s N7 guanine, causing SN2 
alkylation. Alkyl diazonium ions can also target 
O4 of thymine and O6

 of guanine, leading to stable 
DNA modifications that may result in mutations 
and potentially cause cancer. For example, 
Translation changes from G: A can occur when O6 

methylguanine and O6 ethylguanine adducts are 
misinterpreted as adenine during DNA replication. 
This misinterpretation can lead to point mutations, 
altering the genetic code. O4-alkylthymine adducts 
are mistakenly recognized as cytosine during DNA 
replication, which result in translation alterations 
from T: A to C: G. In vivo experiments on rat and 
mouse livers exposed to NDEA or NDMA have 
shown the separation of Ethyl and Methyl DNA 
adducts, mainly at N7G, however  alkylation at 
other sites such as O2T, O6G, N3A and O4T was also 
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Fig. 6. Bioactivation of nitrosamines to reactive species and the major nucleobase adducts subsequently formed

noted, 39 Compared to NDMA, NDEA generated 
a greater ratio of O6G to N7G adducts, which 
suggests that different alkylation sites on guanines 
have different distributions shown in Figure 6. 
Aldehydes produced during the bioactivation of 
N-nitroso dialkylamines, such as formaldehyde a 
carcinogen classified by World health organization/
International agency For Research on Cancer 
(WHO/IARC), form DNA adducts and contribute 
to the genotoxic effects of alkyl diazonium ions 
40. NDMA and other N-nitroso dialkylamines 
are strong carcinogens as they alkylate DNA via 
aldehydes and alkyl-diazonium ions, resulting 
in increased DNA damage. This is demonstrated 
by the detection of DNA adducts such as N6-
hydroxymethyl-2'-deoxyadenosine and di-(N6-
deoxyadenosyl)-methane in the lungs and liver of 
rats following NDMA injections, which can cause 
mutations and cancer 41,42 .NDMA and NDEA 
generate reactive oxygen species (ROS) in Caco-
2 cells, leading to disrupted gene expression 43. 
Since 1978, the IARC has confirmed that animals 

exposed to NDMA and NDEA are suitable models 
for studying their combined carcinogenic effects 44.
 According to the ICH M7R1 guideline, 
consuming N-nitrosamines at interim-limit levels 
over a lifetime would result in fewer than one 
additional cancer case per 100,000 people46. The 
EMA flagged potential cancer risks from prolonged 
NDMA exposure in valsartan, but a Danish 
study found no significant risk, with an adjusted 
hazard ratio of 1.09 (95% Confidence interval: 
0.85–1.41). These findings highlight the need for 
strict regulatory oversight to ensure drug safety.
Compounds capable of inhibiting or preventing 
the development of N-nitrosamines of in 
pharmaceutical product
 Substances can reduce N-nitrosamine 
synthesis via three main mechanisms: nitration 
of phenol, redox pathways, and diazotization 
of primary amines as shown in figure 7 47. 
Effective blocking agents convert nitro-sating 
agents into non-nitrosating NO, competing with 
amines based on their quantities 48. Lipid and 
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Table 1. Nitrite scavengers that may be used in solid oral

Nitrite  Solubility Dosage  Key Characteristics
Scavenger  Forms

á-Tocopherol Fat Tablets, Capsules, Solution,  Efficient absorption, effective nutrient 
  Suspension and nitrite scavenger
Ascorbic Acid Water Tablets, Capsules, Suspension,  Versatile, enhances absorption, effective 
  Solution, Syrup, Powder nutrient and nitrite scavenger
L-Cysteine Water Tablets, Suspension, Capsules Easy dissolution and absorption, dietary 
   supplement
Glycine Water Powder, Solution, Capsules,  Easy dissolution and absorption, dietary 
  Suspension, Tablets supplement
Arginine Water Tablets Easy dissolution and absorption, dietary 
   supplement
Lysine Water Intravenous Easy dissolution and absorption, potential 
   dietary supplement

Fig. 7. Proposed Mechanisms of the Main scavenging Pathways of Nitrosating Agents

water-soluble nitrite scavengers, like ascorbic 
acid, bisulfite, and cysteine, block nitrosation, 
though phenolics may facilitate trans-nitrosation 

49. Fat-soluble antioxidants like á-tocopherol, 
butylated hydroxyanisole (BHA), and butylated 
hydroxytoluene (BHT) are also used, but their 
efficacy may be limited. Solid oral dosage forms can 
benefit from FDA approved “inactive ingredients” 

50. Table 1 lists nitrite scavengers suitable for these 
forms.
Ascorbic Acid
 Ascorbic acid effectively counteracts 
various nitro-sating agents and is safe for 
pharmaceutical use. It excels in weakly acidic 
and aqueous environments, producing NO from 
N2O3, Nitryl ion (H2NO‚ ), and NOX 48. Despite 
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Table 2. Temporary threshold standards for nitrosamines in medications 

Drug Acceptable  Acceptable  Maximum  Acceptable  Acceptable  Acceptable  Acceptable 
 intake  intake   daily dose  intake  intake  intake MNP  intake MNP 
 NDBA  NDBA (mg/day) DIPNA,  NDEA  (ppm) (ng/day)
 and  and   EIPNA and  (ppm)
 NDMA  NDMA  NDEA 
 (ng/day) (ppm)  (ng/day) 

Irbesartan 96 0.32 300 26.5 0.088 - -
valsartan 96 0.3 320 26.5 0.083 - -
Losartan 96 0.96 100(US) 26.5 0.27 - -
  0.64 150(EMA) 26.5 0.177
Olmesartan 96 2.4 40 26.5 0.66 - -
Candesartan 96 3.0 32 26.5 0.83 - -
Eprosartan 96 0.12 800 26.5 0.033 - -
Azilsartan 96 1.2 80 26.5 0.33 - -
Telmisartan 96 1.2 80 26.5 0.33 - -
Metformin 96 0.032 3000 - - - -
Rifampin - - 600 - - 0.16 96

NO’s potential oxidation to nitro-sating agents 
in aerobic conditions, ascorbic acid remains a 
potent scavenger, especially in anaerobic settings 

51. A stoichiometric model in drug formulations 
calculates the necessary ascorbic acid based on 
anticipated nitrosating agent levels during storage. 
In solid forms, particle size and distribution 
affect scavenging efficacy, with wet granulation 
providing uniform distribution. Research confirms 
that ascorbic acid effectively prevents nitrosation, 
significantly reducing N-nitrosamine formation in 
tablets and other pharmaceuticals  52 .
á-Tocopherol
 Preventing N-nitrosamine production 
depends significantly on the antioxidant ability 
of á-tocopherol, which reduces nitro-sating 
agents to non-nitro-sating molecules 53. The 
fully substituted aromatic ring of á-tocopherol 
minimizes C-nitrosation,  54   with its effectiveness 
relying on the non-esterified form due to radical 
production at the hydroxyl group during oxidation. 
In lipophilic media, á-tocopherol works well, also 
performing in aqueous environments where the 
molar ratio of tocopherol to nitrite affects NA 
suppression 55. Optimal nitrite reduction occurs at 
pH 2-3, where less than 25% remains after an hour, 
versus over 95% at pH 5. á-Tocopherol, especially 
when combined with ascorbic acid, reduces nitrite 

faster than ã-tocopherol, significantly lowering 
nitrosamine production in lipid-rich matrices like 
bacon and tablets 56.
Amino acid
 Amino acids with primary amines or thiol 
groups, except proline, efficiently scavenge nitrites 
via diazotization reactions, 57,58  producing unstable 
diazo intermediates that decompose into alcohols 
and nitrogen through the Van Slyke reaction 59. 
L-cysteine effectively inhibits nitrosamine and 
N-nitrosonornicotine synthesis, outperforming 
other amino acids like serine, alanine, and proline. 
Recent screenings indicate variable efficacy with 
temperature, but L-cysteine’s rapid nitrite reduction 
and scavenging capability, attributed to its thiol 
group, make it ideal for solid-state tests 60.
Other substances
 Substances like resveratrol, BHT, 
BHA, maltol, and propyl gallate show potential 
as excipients to reduce nitrosamine formation. 
Nitrosamine conversion decreased by 40-50% 
with lysine and glycine, and by up to 90% with 
histidine at pH 3.0 and 60°C. However, at ambient 
temperature and pH 3.0, scavenging effectiveness 
of histidine, arginine, glycine, and lysine was 
modest. Poorly water-soluble scavengers, such as 
resveratrol, BHA, and propyl gallate, are unsuitable 
for liquid applications 50.
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Table 5. Few reported GC-MS methodologies for detecting nitrosamine impurities

Sr.  Column type Temperature of  Heating  Injection volume and 
No  heating zone Program sample mode

1. Restek Rtx-624 with guard  The GC-MS analysis used a 2 mL injection volume at 240°C with 
 column (30 m × 0.32 mm  a helium flow rate of 1.5 mL/min. The oven was set to 60°C for 
 I.D., 1.8 µm) 2 minutes, then ramped to 240°C at 150°C/min, held for 10 minutes, 
  totaling a 24-minute runtime. The split ratio was 10.0, with ion 
  source and interface temperatures at 230°C and 240°C, respectively, 
  and a detector voltage of 1 kV. NDMA had a retention time of 
  6.59 minutes in SIM mode.
2 SH-Stabilwax  The GC-MS analysis used helium as the carrier gas, pressure-
 (30 m × 0.25 mm ×  controlled, with a temperature ramp: 40°C for 2 minutes, then to 
 0.50 µm) 120°C at 10°C/min, and to 230°C at 25°C/min, for a total runtime 
  of 6 minutes. Headspace parameters included a 1 mL sample 
  injection volume, 120°C oven temperature, 125°C sample line 
  temperature, and 130°C transfer line temperature. The GCMS
  -QP2020NX with HS-20 operated in SIM mode, with a 230°C 
  interface temperature and a 200°C EI source temperature.  

Table 6. Country Specific Risk Mitigation Efforts to Address the Emerging Nitrosamine contamination crises

Country/ Risk Mitigation  Description Status
Region Effort

United States Enhanced Regulatory  Increased FDA inspections and  Ongoing
 Surveillance tighter regulations on nitrosamine 
  levels in pharmaceuticals 79.  
European Union Implementation of  Adoption of guidelines for assessing  Implemented
 ICH M7 Guidelines and controlling mutagenic impurities80.
Canada Mandatory Testing  Health Canada requires routine testing  In Progress
 for Nitrosamines of pharmaceuticals for nitrosamine impurities81.
Japan Stricter GMP  Enforcement of stricter Good Manufacturing  Ongoing
 Compliance Practices (GMP) to prevent nitrosamine 
  contamination82.
India National Task  Establishment of a task force to monitor  Active
 Force on  and address nitrosamine risks in 
 Pharmaceutical  drug production83.
 Safety
China Comprehensive  Nationwide initiative for testing and  Under 
 Nitrosamine  controlling nitrosamine impurities in  Development
 Testing pharmaceutical products84.

Regulatory considerations regarding the use of 
tocopherol and ascorbic acid in pharmaceutical 
products
 Global regulatory bodies like FDA, EMA, 
Pharmaceuticals and Medical Devices agency 
(PMDA), Health Canada, and others collaborate 
to minimize nitrosamine contamination in 
pharmaceuticals due to widespread manufacturing 
networks and distribution.

Europe
 The executive director of the EMA began 
a review of nitrosamine impurities in chemically 
synthesized API in September 2019 following 
the discovery of N-nitrosamine contamination in 
pharmaceutical goods in Europe. This evaluation 
was expanded to cover all human pharmaceuticals 
in 2020. It is up to the producers or Marketing 
Authorization Holders (MAHs) to determine the 
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risk of N-nitrosamine contamination 61. MAHs must 
evaluate risk, test for nitrosamine presence, and 
implement risk mitigation strategies, like adding 
nitrite scavengers, demonstrating effectiveness 
through finished product testing.
USA
 In response to the finding of N-nitrosamine 
contamination in pharmaceuticals, the US FDA 
released Industry Guidance in September 2020. 
The steps for evaluating and controlling the risk 
of N-nitrosamine contamination in medications 
were described in this guidance. This document 
outlines mitigation techniques and sets timelines 
for drug makers to complete phases of pending 
and approved applications, aligning with EMA’s 
three-step procedures 62. Mitigation techniques 
for N-nitrosamines include antioxidants like 
á-tocopherol and ascorbic acid, which effectively 
inhibit their formation in pharmaceuticals, 
highlighting their importance in reducing 
contamination risks 63.
Acceptable intake (AI) of nitrosamine in drugs
 The acceptable intake (AI) of nitrosamines 
in drugs is based on toxicity data to minimize 
cancer risk, with regulatory agencies setting AI 
limits using toxicological assessments like TD50 
values. AI values determine specific nitrosamine 
limits for medications, usually in parts per million 
(ppm). Accurate analytical techniques with 
appropriate limits of quantification (LOQ) are 
crucial. The daily limit for nitrosamine pollutants 
is set at 26.5 nanograms, ensuring overall exposure 
remains below harmful levels 64.Temporary 
threshold standards for nitrosamines in medications 
is given in table 2. 
Analytical Technique
 Various analytical techniques like Ultra 
performance liquid chromatography (UPLC), Gas 
chromatography (GC), Liquid chromatography- 
tandem mass spectroscopy (LC-MS/MS), and 
High-pressure liquid chromatography (HPLC) 
are used to detect and quantify nitrosamine 
contaminants in ranitidine and sartans, ensuring 
pharmaceutical safety.
HPLC
 In  the  pas t  decade ,  HPLC has 
revolutionized chemistry and pharmaceuticals 
by effectively separating complex biological 
mixtures 65. Numerous HPLC techniques feature 
in United states Pharmacopoeia (USP) and 

European Pharmacopoeia (EU). Stationary 
phases like C18/Phenylhexyl are popular for 
nitrosamine analysis, with common detectors 
being Diode array detector (DAD) (230-233 
nm) and Ultraviolet detection (UV) (228 nm). 
Innovations like Chemiluminescence detector 
(LC-PR-CLD) enhance nitrosamine detection. 
Valsartan’s NDMA detection limits are 0.00085 µg/
mL limit of detection (LOD) and 0.00285 µg/mL 
(LOQ) 66. Table 3 provides specifics on a number 
of documented LC-MS techniques for nitrosamine 
impurity detection.
LC-MS/MS
 LC-MS integrates liquid chromatography 
with mass spectrometry to separate, quantify, and 
precisely identify complex mixtures, including 
polar and unstable molecules 67 . Ionization 
methods include Electrospray ionization (ESI) and  
Atmosperic pressure chemical ionization (APCI) 
, crucial for detecting nitrosamine contamination 
in food, beverages, and pharmaceuticals. LC-MS/
MS optimizes parameters like cone voltage and 
collision energy for precise Quality assurance 
and control (QA/QC) of nitrosamine impurities. 
Studies have shown nitrosamine contaminants 
in medications like valsartan and ranitidine 
using LC-MS/MS. Researchers identified eight 
nitrosamine impurities, including NDEA and 
NDMA, emphasizing the technique’s critical role 
in ensuring pharmaceutical safety and compliance 

68. Some reported LC-MS/MS methods are given 
in table 4. 
GC-QTOF, GC-MS, GC-MS/MS, and GC-MS-
Head Space
 An essential tool for examining volatile 
substances and medicinal components is GC-MS. For 
nitrosamine detection, nitrogen chemiluminescence 
and nitrogen-phosphorus detectors are preferred  69 
. NDMA and other nitrosamines are commonly 
analyzed in medications like valsartan, using 
Deutero N-Nitrosodimethylamine (d6-NDMA) 
as an internal standard. Methods like Quadrupole 
time-of-flight mass spectrometer (GC-QTOF), Gas 
chromatography (GC), GC-MS, and GC-MS-Head 
Space methods detect nitrosamines in ranitidine 
and sartans. The US FDA used GC-Head Space 
to identify four nitrosamines in valsartan, with 
detection limits of 0.01-0.025 ppm. Different 
sartans were tested for the presence of NDEA 
and NDMA using the official medicine control 
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laboratory (OMCL’s) LGL Method. The permitted 
limits for these nitrosamine impurities per 320 mg 
of API are 0.080 ppm for NDEA and 0.10 ppm 
for NDMA, according to this procedure 70. Few 
reported GC-MS methodologies for detecting 
nitrosamine impurities are given in table 5.
Non-Chromatographic Method
 Various techniques for analyzing 
NAs include molecularly imprinted polymers 
with impedimetric sensors (LOD: 0.85 µg/L), 
chemiluminescence, and UV-photolysis 71. In the 
food industry, spectrophotometry, following the 
Griess reaction, is used for high concentrations 
of NAs but has limitations due to variability in 
Nitrate (NO3) and Nitrogen dioxide (NO2) ion 
generation during NDEA analysis 72 Reaction-
based colorimetric assays, like the Eisenbrand-
Preussman reaction, detect nitrite from cleaved 
nitrosamines but have high detection limits and 
require large nitrosamine concentrations. Walsh et 
al. (2005) developed a yeast-based biosensor using 
genetically modified yeast with a DNA damage 
reporter system (RAD54-GFP) and cytochrome 
P450 enzymes, detecting NDMA at 1.6 mg/L. Bui 
et al. developed a similar system with detection 
at 3 mg/L. While these methods are useful, they 
may face challenges in pharmaceutical testing 
due to high active pharmaceutical ingredient 
concentrations 73.
Different methods of sample preparation are 
available for separating nitrosamine impurities
 Several methods are used for preparing 
samples to separate nitrosamine impurities in 
pharmaceutical products.
Solid-Phase Extraction (SPE)
 Utilizes a solid sorbent to selectively 
retain nitrosamines from the sample matrix, 
followed by elution for analysis.
Liquid-Liquid Extraction (LLE)
 Involves partitioning nitrosamines 
between two immiscible liquid phases, typically 
using organic solvents, followed by separation and 
concentration.
Derivatization followed by Extraction
 Converts nitrosamines into more 
detectable or extractable forms prior to analysis, 
enhancing sensitivity.
Precipitation Techniques
 Involves adding reagents to selectively 
precipitate nitrosamines for isolation.

Solid-Phase Microextraction (SPME)
 Uses a coated fiber to extract and 
concentrate nitrosamines from the sample matrix 

74. 

 Each method offers unique advantages 
based on sample complexity and sensitivity. DCM 
is a common solvent for nitrosamine extraction, 
selected per study needs.
 The effects of nitrosamine contamination 
and measures for its mitigation 
 Global ARB recalls due to nitrosamine 
contamination highlight the need for improved 
safety measures by manufacturers, regulators, and 
healthcare professionals.
Risk Evaluation 
 Preempt ive  r i sk  assessment  for 
nitrosamine contamination is essential throughout 
a medicine’s shelf life, starting from production. 
This is particularly important in API production, 
especially during tetrazole formation in ARB 
synthesis. Detailed synthetic route information 
is vital for identifying impurities, though often 
omitted in ASEAN registrations. Additional 
precautions include setting impurity limits and 
managing trace amines in solvents. In September 
2019, the EMA requested nitrosamine evaluations 
for concerning drugs within six months, prioritizing 
risk management 75. Tetrazole-containing drugs are 
high-priority for nitrosamine identification due 
to patient exposure risks. Risk assessment may 
prompt process modifications based on lab tests, 
with a strong understanding of organic chemistry 
being essential 76,77. Mass spectrometry is vital for 
nitrosamine detection, but screening for unknown 
pollutants can be challenging due to equipment 
accessibility and affordability issues in GC-MS 
and LC-MS analysis 
Impurity control for nitrosamines
 Controlling contaminants in drug 
ingredients, excipients, and final products complies 
with ICH quality principles and pharmacopeial 
standards. Pharmacopeial monographs establish 
limits for nitrosamine traces, but addressing 
mutagenic contaminants like nitrosamines 
remains challenging despite ICH M7 guidelines. 
Precise analytical techniques are crucial to avoid 
contamination during nitrosamine analysis in 
APIs and medicinal products. Toxicity data 
inform acceptable limits considering future 
synergistic effects. N-nitroso dialkylamines 
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analysis may integrate into standard quality 
control due to carcinogenic concerns, possibly 
revising monographs. High-risk medications like 
tetrazole-containing ARBs 78, warrant nitrosamine 
analysis, though pharmacopeial monographs may 
not cover all types. Regulatory agencies collaborate 
with producers to identify nitrosamine sources. 
Balancing patient carcinogen exposure risks with 
medication availability is challenging, mitigated 
by short-term measures to prevent shortages. 
Healthcare professionals play a critical role in 
patient communication, emphasizing adherence 
and exploring alternative therapies during recalls 
amidst the nitrosamine crisis. Various have 
implemented specific risk mitigation efforts 
to tackle the emerging crisis of nitrosamine 
contamination in pharmaceuticals, (Shown in table 
6).

CONCLUSION 

 N-nitrosamines, known carcinogens 
found in medications like antidiabetic drugs and 
Histamine-2 receptor blockers, have prompted 
stringent testing and mitigation efforts by 
regulatory bodies. This review highlighted the 
need for robust detection methods, used of nitrite 
scavengers, and ongoing challenges in accurately 
assessing and managing risks. Tetrazole-based 
drugs and related amine analogs are particularly 
affected, necessitating adherence to ICH M7 (R1) 
guidelines and US Pharmacopeia Chapter <1469> 
for risk assessment and control. Regulatory bodies, 
including the US FDA, CDSCO, and EMA, are 
setting limits and requiring precise quantification 
to address these issues. Present review concluded 
that to improve safety, proactive risk management, 
enhanced industry collaboration, and updated 
regulatory guidelines are essential, along with 
incorporating country-specific risk mitigation 
strategies to manage emerging threats and ensure 
global drug quality.
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