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	 Alzheimer's disease (AD) is a polygenic, progressive neurodegenerative condition 
that leads to cognitive and behavioural impairment. The drugs available for AD have been 
found vital for symptomatic cognitive treatment, but cannot treat or slow down the disease's 
progression, besides having severe side effects. Plants have been extensively used in traditional 
medicine, and marine phytochemicals have also been proven as a legitimate solution for several 
ailments. This study was carried out to screen marine phytochemicals for AD therapy and 
neuroinflammation by focusing on inhibiting the neuroinflammatory pathway involved in AD 
progression and nervous system degeneration using I?K as the therapeutic target protein. Virtual 
screening of 2583 marine phytochemicals retrieved from the Comprehensive Marine Natural 
Products Database (CMNPD) was performed for Lipinski's rule, ADME/T profiling, Blood-brain 
permeability and molecular docking studies using I?K as the target receptor and Curcumin 
as the standard inhibitor of I?K.  Seven marine phytochemicals (CMNPD IDs: CMNPD25050, 
CMNPD793, CMNPD18964, CMNPD14904, CMNPD31514, CMNPD24296) showed better binding 
affinity when docked against I?K as compared to the standard compound Curcumin and are the 
potential lead molecules to be further evaluated for AD therapy. Molecular dynamics simulations 
were also performed to investigate the binding interactions and stability of the top-hit marine 
phytochemical CMNPD25050 (8,11-dihydro-1-methoxy laurokamuren-12-ol) with the I?K target 
protein.

Keywords: Marine natural products; Molecular modelling; Molecular docking;
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	 Alzheimer’s disease (AD) is the most 
common neurodegenerative ailment affecting about 
24 million people worldwide, and it accounts for 
50-70% of all cases of dementia1. The accumulation 
of amyloid-beta plaques (extracellular) and 
neurofibrillary tangles (intracellular) are considered 
to be the two pathological hallmarks of AD2. Many 
unequivocal hypotheses have been proposed 
regarding AD pathologies, based on amyloid 

protein accumulation, cholinergic pathway, and 
oxidative stress3-6. Neuroinflammation plays a 
crucial role in the pathogenesis of Alzheimer’s 
disease. The presence of amyloid-beta and 
neurofibrillary tangles triggers an inflammatory 
response in the brain, characterized by the 
activation of glial cells (microglia and astrocytes) 
and the release of inflammatory mediators like 
cytokines, chemokines, and reactive oxygen 
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species. This chronic neuroinflammatory state 
exacerbates neuronal damage and contributes to 
the progression of the disease.
	 The nuclear factor-kappa B (NF-êB) has a 
pivotal role in the pathophysiology of Alzheimer’s 
disease (Figure 1). In the cytoplasm, NF-êB 
remains masked for nuclear translocation through 
its association with the inhibitor-kappa B protein 
(IêB). Neuronal stimuli like – Tumor necrosis 
factor receptors (TNFRs), lipopolysaccharides 
(LPS), cytokines, etc, trigger the activation of IêB 
kinase (IêK), leading to IêB phosphorylation and 
degradation, and unmasked NF-êB translocates to 
the nucleus. Within the nucleus, NF-êB interacts 
with the promoter regions of key genes, such as 
BACE1 and APOE, involved in neurodegeneration 
and Alzheimer’s disease progression (Figure 1). 
Thus NF-êB play the central role in in molecular 
events that drive Alzheimer’s disease pathology, 
linking neuroinflammation, Aâ production, 
and neurodegeneration7-8. The expression of 
â-secretase1 (BACE1) is also regulated by the 
NF-êB signalling pathway, which increases Aâ 
production and accumulation9. The NF-êB pathway 
can be regulated in AD patients by inhibiting the 
factors responsible for its elevated level. Inhibition 
of IêK can break the thread of NF-êB-related 
pathophysiologies. The IêKs are also reported 
to be essential to various disease conditions 
such as asthma and rheumatoid arthritis10, thus 
imperatively suggesting it to be considered as a 
possible therapeutic target for AD therapy11. 
	 Phytochemicals, including marine 
phytochemicals, have been demonstrated to have 
neuroprotective properties. Marine algae are a rich 
source of antioxidants like carotenoids, phenolics, 
sulfated polysaccharides, and vitamins that have 
exhibited neuroprotective properties in neuronal 
cell cultures and animal models12. The extracts 
from green algae (Codium tomentosum) have 
been shown to have neuronal cell protection from 
amyloid beta-induced toxicity through antioxidant 
effects and acetylcholinesterase inhibition13. 
Additionally, the phlorotannin compound EM2 
isolated from the brown alga (Ecklonia maxima) 
was reported to reduce apoptosis and mitochondrial 
dysfunction in cellular Parkinson’s disease 
models14. In-vivo, evidence also supports the 
neuroprotective effects of marine products. 
Supplementation with the lichen-derived ramalin 

improved cognitive function in an Alzheimer’s 
mouse model by attenuating neuroinflammation 
and neuronal cell death15. These findings highlight 
the neuroprotective potential of certain marine 
natural products and warrant further research 
into their bioavailability, efficacy, and safety in 
human clinical trials. Marine compounds may 
provide promising new therapeutics for age-related 
neurodegenerative diseases.
	 So, the present study was undertaken to 
screen the marine phytochemicals, using in-silico 
tools to design and development of AD therapeutics. 
The virtual screening involved Druggability 
profiling (Lipinski’s rule), ADME/T profiling, 
Blood-brain permeability and molecular docking 
studies, and Molecular dynamics simulations using 
IêK as the target receptor.

Materials and Methods

Retrieval and pharmacokinetics screening of 
marine phytochemicals
	 Marine phytochemicals were retrieved 
from the Comprehensive Marine Natural Products 
Database (CMNPD) in plant taxa, and 2583 
compounds were obtained on 26 May 202216 
(Supple1_CMNPD). CMNPD is a manually 
curated open-access knowledge base dedicated 
to marine natural products research, currently 
containing 31561 compounds with unique chemical 
structures.
	 The library of marine phytochemicals was 
filtered to select molecules with drug-like properties 
and oral bioavailability. Key criteria that impact 
oral absorption and permeability were calculated, 
including hydrogen bond donors/acceptors, 
molecular weight, and partition coefficient (logP). 
Compounds were screened using the Sanjeevini 
web server17 to identify those violating no more than 
one of Lipinski’s guidelines. This widely utilized 
principle states that oral bioavailable medications 
tend to comply with cutoffs of <5 hydrogen donors, 
<10 hydrogen acceptors, molecular weight under 
500 daltons, and logP not >5. ADMET (absorption, 
distribution, metabolism, excretion, and toxicity) 
properties, HIA (Human intestinal absorption), 
blood-brain barrier permeability, H-HT (Human 
hepatotoxicity), Ames’s mutagenesis, DILI (Drug-
induced liver injury), Herg inhibition, ROA (Rat 
Oral Acute Toxicity) and Respiratory toxicity of the 
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phytochemicals were analyzed using ADMETlab 
2.0 18 webserver. Compounds exhibiting favourable 
outcomes were selected for further investigations.
Retrieval and energy minimization of 3D 
structures of selected marine phytochemicals
	 The 3D structures of selected compounds, 
after pharmacokinetic screening, were retrieved 
from PubChem Database 19 in structure data file 
(.sdf) format. These ligands were exported in 
pdb format, using PyMOL20. The 3D structures 
of the ligand molecules were subjected to energy 
minimization, using the AMBERff14SB force field 
in UCSF Chimera21, prior to docking. Minimization 
was performed using the steepest descent algorithm 
for 100 steps followed by conjugate gradient for 
10 steps with a step size of 0.02 Å. This energy 
minimization relieved strain and brought the 
ligands to a lower energy conformation. Curcumin 
was selected as a standard compound as it serves 
as an IêK inhibitor2-3. 
Homology modelling and validation of target 
protein 
	 The 3D structure of IêK protein, available 
at RCSB Protein Data Bank (PDB)22 with PDB 
ID 4KIK, was observed to have several missing 
residues. Hence, homology modelling of IêK 
protein was done, using the SWISS-MODEL 
web server (https://swissmodel.expasy.org/) in 
user template mode, to obtain the complete 3D 
structure. The protein sequence of the IêK protein 
was retrieved from the Uniprot database  (https://
www.uniprot.org/) for homology modelling. 
The modelled 3D structure of IêK protein was 
validated using the ERRAT23 and PROCHECK24 
of SAVESv6.0, ProSA-web25 and MolProbity 
online servers. The validated target protein (IêK) 
was subjected to energy minimization using the 
AMBERff14SB force field in UCSF Chimera21. 
Molecular docking
	 The molecular docking studies were 
carried out to evaluate the inhibitory potentials 
of selected marine phytochemicals. These ligands 
were docked against  IêK protein, using Autodock 
suite v4.2.626-27. Kollman and Gasteiger charges 
were assigned to the receptor protein followed by 
the conversion of PDB structure files of IêK protein 
and selected marine phytochemicals into pdbqt 
format using autodock tools (ADT). The grid box 
parameters for the binding pocket were saved as 
grid parameter files (GPF) for protein receptors, 

and necessary map files were generated after the 
autogrid run. Based on the predicted binding site by 
blind docking, the grid box was set to 68Å x 54Å 
x 64Å centred at 55.851, 28.783, and -59.265 (X, 
Y, and Z-axis).  Autogrid was executed to generate 
the necessary grid map files based on the grid box 
parameters. In Autodock, the Lamarckian genetic 
algorithm was applied as the conformational search 
method to execute molecular docking. One hundred 
independent docking runs were carried out for each 
ligand-IêK complex using a translation step size of 
0.2 Å. The genetic algorithm parameters were set 
to a population size of 150, mutation rate of 0.02, 
crossover rate of 0.8, and cluster tolerance of 0.5 
Å. Autodock was then run to perform automated 
docking simulations and calculate dock scores for 
each ligand. Finally, the interactions between the 
top dock-scoring phytochemical- IêK complexes 
were visualized using LIGPLOT+28 to analyse the 
molecular interactions within the binding sites. 
Molecular dynamic simulations
	 The top docked complex of marine 
phytochemical  8 ,11-dihydro-1-methoxy 
laurokamuren-12-ol with IêK protein was selected 
for further molecular dynamic simulation (MDS) 
study using GROMACS v2020.129-30. The topology 
files for selected marine phytochemical and 
receptor complexes are generated using the 
Charmm 36m force field 31. Then the selected 
simulation system was prepared by solvating 
the complex in a cuboid box with TIP3P water 
molecules, whereas to neutralize the system, 
sodium and chloride ions were added. After that, 
the geometric strain of the selected system was 
removed by energy minimization using the steepest 
descent algorithm. The simulation system, after 
undergoing energy minimization, was subjected 
to equilibration under constant temperature (310K) 
and pressure (1 bar) conditions for a duration of 1 
nanosecond (ns) using the Nose-Hoover thermostat 
and Parrinello-Rahman barostat respectively, 
during the equilibration process. The system 
was studied for a period of 10 ns under constant 
temperature and pressure conditions, during the 
molecular dynamics simulation by employing 
periodic boundary conditions (PBC). Trajectory 
data was recorded at intervals of 1 picosecond (ps). 
Throughout the entire simulation, ligand-protein 
interaction was monitored to assess stability. 
To validate the binding stability of the selected 
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marine phytochemical with the studied Alzheimer’s 
disease target receptor, several analyses were 
performed. These included calculations of the 
Root Mean Square Deviation (RMSD), root-
mean-square fluctuation (RMSF), Coulombic and 
Lennard-Jones (LJ) interaction energies, Radius of 
gyration (Rg), and Solvent Accessible Surface Area 
(SASA) for each frame over the 10 ns simulation 
run.

Results 

Retrieval and pharmacokinetics screening of 
marine phytochemicals
	 A total of 2583 compounds were retrieved 
from CMNPD (Supple1_CMNPD) of which only 
1485 phytochemicals were selected for drug-like 
properties based on lipinski’s rule of five (Supple1_
LIPINSKI).
	 Pharmacokinetic profiling of the selected 
1485 phytochemicals was conducted and a total 
of 122 phytochemicals (Supple1_ADMET) were 
obtained as hits with acceptable Absorption, 
distribution, metabolism, excretion and toxicity 

profiles using ADMETlab 2.018 and were selected 
for further molecular docking studies.
Homology modelling and model evaluation 
	 The 3D-structure of the selected target 
protein (IêK protein) was obtained by comparative 
modelling using Uniprot id_O14920 (human IêK 
protein) sequence and PDB ID: 4KIK as a template 
by SWISS MODEL server (https://swissmodel.
expasy.org/) in user template mode (Figure 2). 
The Ramachandran plot evaluation showed 94.3 
% and 5.6% residues in favoured and additionally 
favoured regions, respectively revealing the model 
above good quality with an acceptable model score 
(Figure 3). The protein model of human IêK protein 
structure validation result using errat and procheck 
showed an Overall Quality Factor and Z-score 
of 93.92 (Figure 4) and -11.49, respectively. 
Additional MolProbity validation was performed 
on the completed IêK structure model, with results 
summarized in Table 1. Key quality metrics such 
as the clash score in the 99th percentile, good 
rotamers (2.54% outliers), and MolProbity score in 
the 80th percentile confirm the high stereochemical 
quality. The Ramachandran plot for the structure 

Fig. 1. Process of activation of NF-κB pathway and activation of genes involved in neurodegeneration, 
highlighting the central role of NF-κB in molecular events that drive Alzheimer’s disease pathology, linking 

neuroinflammation, Aβ production, and neurodegeneration. In the cytoplasm, NF-κB remains masked for nuclear 
translocation through its association with the inhibitor-kappa B protein (IêB). The neuronal stimulation triggers 

the activation of IκB kinase (IκK), leading to IκB phosphorylation and degradation. The unmasked NF-κB 
translocates to the nucleus where it interacts with the promoter regions of key genes, such as BACE1 and APOE, 

involved in neurodegeneration and Alzheimer’s disease progression
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Fig. 2. The 3D structure of human IκK protein modelled structure

still shows some non-ideality, with 9.04% outliers 
and 81.92% favoured residues. However, overall 
results across multiple validation approaches verify 
this IêK homology model is of suitable accuracy 
for reliable molecular docking studies and further 
analyses.
Molecular docking studies
	 The selected 122 phytochemicals, 
with drug likeness and a good ADME/T profile, 
were subjected to molecular docking against a 
human IêK target protein, using Autodock suite 
v4.2.6, and their binding energies were noted 
(Supple1_ RESULT). The docking conformations 
of ligands (selected phytochemicals) showing 
binding energies lower than the selected standard 
(Curcumin) with a binding energy of -8.63kCal/
mol,  were selected for further study (Table 1). 
The seven hit phytochemicals (CMNPD IDs: 
CMNPD25050, CMNPD793, CMNPD18964, 
CMNPD14904, CMNPD31514, CMNPD24296) 
exhibited higher binding affinity towards the 
nuclear factor kappa-B kinase subunit beta as 
compared to Curcumin (Table 2). The docked 
complexes were visualized in PyMOL (20) and 
the ligand-protein interactions for the selected 
hits were analyzed by LIGPLOT+ to identify key 
interacting residues (Figure 6-7) (Table 3). The 
dock site analyses revealed all the studied ligands 
occupied a similar binding pocket as the standard 
(Curcumin), indicating their inhibitory actions 
(Figure 6-7). These selected phytochemicals were 

observed to be produced by two plant genera - 
Ceriops (Mangroves) and Laurencia (Red algae) 
(Table 2).	
Molecular dynamics simulations 
	 The root-mean-square  deviat ion 
(RMSD) profile of the 8,11-dihydro-1-methoxy 
laurokamuren-12-ol and IêK complex was 
analyzed to evaluate the structural stability during 
the 10ns simulation. During the initial phase of 
approximately 1 ns, a rapid increase in RMSD 
is observed, indicating a major conformational 
rearrangement as the system departs from the 
starting structure. Subsequently, the RMSD 
fluctuates around a value within an acceptable 
range (0.3nm), suggesting that the complex attains 
a stable conformation after the initial equilibration 
period till the 10ns simulation (Figure 7a). The 
root-mean-square fluctuation (RMSF) analysis 
revealed significant fluctuations in the mobility 
and flexibility of different regions within the 
protein structure. The RMSF values ranged from a 
minimum of 0.0537 (residue 3273) to a maximum 
of 0.6605 (residue 10628), indicating the presence 
of both rigid and highly flexible regions. Several 
distinct peaks like residue 10621 with RMSF of 
0.6134nm were observed in the RMSF profile, 
suggesting the presence of flexible loops, hinges, 
or exposed domains (Figure 7a). In contrast, 
several regions exhibited relatively low RMSF 
values, indicating more rigid and stable portions 
of the protein structure (Figure 7b). The total 
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Fig. 3. The Ramachandran plot of modelled structure of IκK protein

Fig. 4. The errat result of modelled structure of IκK protein

radiation of gyration (rGyr) values reported in 
the data range from a minimum of approximately 
5.78 nm to a maximum of around 5.81 nm, with 
an average value of approximately 5.80 nm over 
the 10 nanosecond simulation trajectories (Figure 
7c). The relatively small variations observed in 
the rGyr, with a range of approximately 0.03 nm, 
suggesting that the overall size and compactness of 
the system remained relatively stable throughout 
the simulation (Figure 7c). The total interaction 
energy between the ligand and protein was 
analyzed from the 10ns molecular dynamics 
trajectory. The Coulombic interaction energy was 
found to be -38.6352 kJ/mol, indicating favourable 
electrostatic interactions between the ligand and 
protein. However, the Lennard-Jones interaction 
energy was 289.744 kJ/mol, suggesting significant 

steric clashes or unfavourable van der Waals 
interactions. The total interaction energy exhibited 
fluctuations throughout the simulation, as evident 
from the energy profile (Figure 7e). The number 
of hydrogen bonds fluctuated significantly over 
10ns times, ranging from 0 to 3 hydrogen bonds 
at different points during the simulation (Figure 
7d). There were periods where no hydrogen 
bonds were present, as well as instances where 
multiple hydrogen bonds (up to 3) were formed 
simultaneously between the 8,11-dihydro-1-
methoxy laurokamuren-12-ol and NF-êB protein. 
This variability in hydrogen bonding suggests a 
highly flexible binding mode, with the hydrogen 
bond interactions continually forming, breaking, 
and reforming throughout the 10ns simulation. 
The solvent-accessible surface area (SASA) of the 
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Table 1. Summary of MolProbity validation metrics for the homology model of the 
human IκK protein

Validation metric	 Result	 Goal

Clashscore	 1.54 (99th percentile)	 Lower is better
Poor rotamers	 2.54%	 <0.3%
Ramachandran outliers	 9.04%	 <0.05%
Ramachandran favoured	 81.92%	 >98%
Molprobity score	 1.918 (80th percentile)	 Lower is better
Câ deviations	 1.55%	 0%
Bad bonds	 0 / 27170 (0%)	 0%
Bad angles	 28 / 37080 (0.76%)	 <0.1%
Cis prolines	 0 / 32 (0%)	 d”1 per chain
Cis non-prolines	 2 / 3223 (0.62%)	 <0.05%
Twisted peptides	 28 / 3557 (7.89%)	 0%
Cablam outliers	 17 (4.8%)	 <1.0%
CA Geometry outliers	 9 (2.56%)	 <0.5%
Chiral volume outliers	 0 / 405	 -

Table 2. The phytochemicals of CMNPD having binding energies lower than the standard 
(Curcumin), when docked against IκK protein

S.	 CMNPD ID	 Binding energy 	 Plant name	 Compound Name
No.		  (kcal/mol)

1.	 CID969516	 -8.63	 Curcuma longa	 Curcumin
2.	 CMNPD25050	 -11.35	 Laurencia obtusa	 8,11-dihydro-1-methoxy 
				    laurokamuren-12-ol
3.	 CMNPD793	 -10.41	 Laurencia pinnata	 Pinnasterol
4.	 CMNPD775	 -10.14	 Laurencia irieii	 Neoireone
5.	 CMNPD18964	 -9.41	 Laurencia saitoi	 No Data
6.	 CMNPD14904	 -9.28	 Laurencia tristicha	 10-hydroxyepiaplysin
7.	 CMNPD31514	 -8.95	 Ceriops decandra	 Decandrol D
8.	 CMNPD24296	 -8.69	 Ceriops decandra	 Decandrin B

simulated system over the 10 ns time scale exhibits 
significant fluctuations, ranging from a minimum 
of approximately 6.45 nm to a maximum of around 
7.73 nm (Figure 7f). These fluctuations indicate 
that the simulated system undergoes various 
conformational states during the simulation.

Discussion

	 This in-silico study presents IêB kinase 
(IêK) as a therapeutic target for preventing the 
progression of AD using marine phytochemicals. 
A set of 2583 compounds, retrieved from 
CMNPD, were subjected to primary evaluation of 
druggability and having an acceptable ADME/T 
profile. Lipinski’s rule of five parameters correlates 

with oral bioavailability32( Supple1_LIPINSKI). 
ADMETlab 2.0 web server was used for 
ADME/T profiling. The algorithms in ADMETlab 
use machine learning on large experimental 
bioactivity datasets to predict property values18. 
The HIA model utilizes a robust random forest 
classifier trained on over 8000 compounds with 
human jejunal permeability data33. Blood-brain 
barrier permeability screening was done to 
select neuroactive candidates34. Hepatotoxicity, 
mutagenicity, cardiotoxicity, and other toxicity 
risks were minimized by filtering the compounds 
with low predicted liability 35-39. An optimal 
probability cutoff of 0 to 0.7 was applied to select 
compounds with high gastrointestinal absorption, 
and neuroactive properties and minimize toxicity 
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Table 3. Ligand-protein interactions for the selected hits (phytochemicals) of CMNPD having binding energies 
lower than the standard (Curcumin), when docked against IκK protein

S.	 CMNPD ID	 H-Bond 	 H-bond interaction 	 Interacting Residues 
No.

1.	 Curcumin	 5	 Cys99-3.01 , Asp166-3.05,	 Leu21, Gly22, Val29, Glu61, Met65, 
			   2.46Lys44-3.17Thr23-2.90,3.18	 Leu94, Met96, Tyr98,  Val152, Ile165
2.	 CMNPD25050	 2	 Cys99-3.23Asp166-3.00	 Leu21, Gly22, Thr23, Gly24, Phe26, 
				    Gly27, Val29, Ala42, Lys44, Val97, 
				    Tyr98, Gly102, Asp103, Val152, Ile165
3.	 CMNPD793	 4	 Cys99-3.03,2.91Glu97-3.14,3.02	 Leu21, Gly22, Thr23, Val29, Ala42, 
				    Val74, Met96, Tyr98, Gly102,
				    Glu149, Val152, Ile165
4.	 CMNPD775	 5	 Cys99-3.00,2.87Glu97-3.07	 Leu21, Gly22,Val29, Ala42, Lys44, 
			   Thr23-2.97,3.09	 Val74, Met96, Tyr98, Gly102,
				    Glu149, Val152, Ile165	
5.	 CMNPD18964	 4	 Thr23-2.74,2.82Glu97-3.14	 Leu21, Gly22, Gly24, Phe26, Val29, 
			   Cys99-3.19	 Ala42, Tyr98, Gly102, Asp103, 
				    Glu149, Val152, Ile165
6.	 CMNPD14904	 5	 Asp145-2.71,2.63, 	 Leu21, Gly22, Thr23, Gly24, Gly27, 
			   Lys147-2.86,Asn150-2.	 Val97, Tyr98,Cys99, Gly102, 
			   Asp166-2.83	 Asp103, Glu149, Val152, Ile165
7.	 CMNPD31514	 2	 Glu97-3.15, Asp166-3.06	  Gly22, Thr23, Gly24, Ala42, Lys44, 
				    Val74, Met96, Cys99, Gly102, 
				    Val152, Ile165	
8.	 CMNPD24296	 2	 Glu97-2.88, Cys99-3.24	 Leu21, Gly22, Thr23, Val29, Ala42, 
				    Val74, Met96, Tyr98, Glu149, 
				    Asn150.  Val152, Ile165

18, This multi-parameter ADMET filtration resulted 
in 122 out of evaluated marine phytochemicals and 
were selected for further molecular docking studies 
(Supple1_ADMET). 
	 The target protein (human IêK enzyme) 
structure at Protein Databank (PDB), selected for 
our study, had missing residues (PDB ID: 4KIK) 
and hence was subjected to homology modelling 
to generate the complete 3D-structure,  using 
SWISS-MODEL with the 4KIK crystal structure 
as a template (Figure 2). The generated 3D model 
of the human IêK enzyme was evaluated using 
multiple model validation assessment methods that 
confirmed model reliability for its subsequent use in 
molecular docking studies. The Ramachandran plot 
evaluation demonstrated excellent stereochemical 
quality, with 94.3% of residues in the most favoured 
regions and 5.7% in allowed regions 24 (Figure 3). 
No residue was detected in a disallowed region of 
the Ramachandran plot. The ERRAT evaluation of 
non-bonded interactions of the modelled structure 
of human IêK revealed an overall quality factor of 

93.92% (Figure 4), exceeding the acceptable value 
of ~91%, for templates with 2.5-3.0Å resolution23, 
thus confirming minimal structural error in our 
generated model of human IêK protein. The ProSA 
analysis revealed a Z-score of -11.49 that falls 
within the range characteristic of native proteins 
and reflected proper residues’ packing of our 
modelled structure of human IêK 25,40. MolProbity 
evaluation (Table 1) of the IêK homology model 
showed favourable metrics across several validation 
criteria. The Clashscore was 1.54, ranking in the 
99th percentile relative to other structures and 
indicating excellent packing and absence of serious 
steric clashes. Only 2.54% of residues were flagged 
as poor rotamers. In terms of backbone geometry, 
9.04% of residues were Ramachandran outliers, 
below the recommended <0.05%. 81.92% of 
residues were in favoured regions, slightly lower 
than the target >98%. The MolProbity score of 
1.918 ranked in the 80th percentile. There were 
minimal deviations in bond lengths and angles, 
with 0 bad bonds and only 0.76% bad angles. 
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Fig. 5. The docking site images of IêK protein when docked against ligands: 
CMNPD 775 (a); CMNPD 793 (b); CMNPD 1490 (c); CMNPD 18964(d)

The percentage of twisted peptides at 7.89% was 
higher than ideal. The Cablam analysis identified 
4.8% outliers in residue conformations and 2.56% 
outliers in CA geometry, both within acceptable 
ranges. There were no chiral volume outliers. 
Overall, the MolProbity validation indicates the 
IêK homology model exhibits excellent local 
packing and stereochemistry. The twisted peptides 
and marginally lower Ramachandran statistics are 
potential areas for improvement but are unlikely 
to significantly impact the suitability of the model 
for molecular docking studies. Comprehensively 
the model validation tools verified our homology 

model of human IêK protein as sufficiently accurate 
for its use in molecular docking studies. 
	 Molecular docking was used in the present 
study to analyze the inhibitory effects of selected 
phytochemicals with Curcumin as a standard 
inhibitor of human IêK protein. Previous cellular 
and animal model studies have demonstrated 
the curcumin’s ability to cross the blood-brain 
barrier41-42 and exert anti-inflammatory effects in the 
CNS and research suggests these neuroprotective 
effects are mediated in part through inhibition of 
IêK protein and downstream NF-kB signaling 2-3. 
AutoDock used for our molecular docking studies, 
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Fig. 6. The docking site images of IêK protein when docked against ligands: CMNPD 24296 (a); CMNPD 25050 
(b); CMNPD 31514 (c) and Curcumin (d)

is an automated docking program that efficiently 
samples ligand poses within the receptor binding 
site and estimates the free energy of binding26-27. 
	 The ligand-receptor contacts analysis 
(Table 3), after docking studies, provided insight 
into specific molecular interactions underlying their 
high predicted affinities. The marine phytochemical 
8,11-dihydro-1-methoxylaurokamuren-12-ol 
(CMNPD25050) was observed to be the ligand 
with highest affinity towards human IêK protein 
with lowest binding energy of -11.35 kCal/mol 
(Table 2) and was observed to form hydrogen 
bonds with key IêK protein residues Cys99, and 
Asp166 (Table 3), which stabilized the ligand 
within the active site of receptor protein. The 
hydroxyl group of ligands was revealed to act 
as both hydrogen bond donor and acceptor to 
these critical binding site residues of IêK protein. 
Additionally, the hydrophobic contacts with 

Leu21, Gly22, and other non-polar residues 
can be predicted to improve complementarity 
and further reinforce binding. These observed 
intermolecular interactions with similar binding 
pocket compared to Curcumin (Table 3 and 
Figure 6) provide clues into the structural basis 
of 8,11-dihydro-1-methoxylaurokamuren-12-
ol’s high predicted affinity and warrant the 
highest priority for subsequent experimental IêK 
enzyme inhibition assays at in-vitro and in-vivo 
level as anti-inflammatory leads with improved 
potency and pharmacokinetics over current 
standards like curcumin. Other studied marine 
phytochemicals (CMNPD793, CMNPD775, 
CMNPD18964, CMNPD14904, CMNPD31514 
and CMNPD24296) have binding affinity better 
than curcumin (with binding energy of – 8.63 kCal/
mol) (Table 2,3 and Figure 5,6) were observed to 
be produced by the marine genera Ceriops and 
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Fig. 7. Molecular dynamic studies of top hit marine phytochemical CMNPD 25050 with IêK protein, RMSD 
of ligand-protein complex (a); RMSF of protein (b); Total radiation of gyration (c); Hydrogen Bond (d); Total 

interaction energy (e); SASA (f).

Laurencia (Table 2). The alcoholic extract of 
Ceriops decandra has been identified for its anti-
inflammatory properties43-44, antioxidant activity45, 
antidiarrhoeal activity46 and Hepatoprotective47. 
The crude extracts of Laurencia obtusa have been 
reported for pharmacological activities like in-vivo 
anti-inflammatory, in-vitro immunomodulatory, 
gastroprotective and analgesic effects in earlier 
reported studies48-49. Laurencia tristicha and 
Laurencia obtusa have been reported to have 
antioxidant properties49-50. These studies provide 
evidence that marine algae produce compounds with 
neuroprotective and anti-inflammatory activities 
relevant to Alzheimer’s disease. While the specific 
mechanisms were not characterized, the origins 
of the hit compounds suggest they may exhibit 
similar therapeutic benefits and target neurotoxic 
inflammation linked to Alzheimer’s progression. 
The predicted IêK binding and inhibitory activities 
of the identified phytochemicals are consistent 
with potential anti-inflammatory effects mediated 

through modulation of the NF-kB/IêK pathway. 
Molecular dynamics simulations of the top hit 
marine phytochemical 8,11-dihydro-1-methoxy 
laurokamuren-12-ol in complex with IêK protein 
provided insights into binding dynamics(Figure 
7). RMSD analysis confirmed a stable binding 
mode after initial equilibration(Figure 7a). 
RMSF revealed a dynamic protein structure with 
flexible regions crucial for ligand binding and 
conformational changes(Figure 7b). The radius of 
gyration indicated a relatively compact and stable 
system throughout the 10 ns simulation, with minor 
fluctuations reflecting inherent flexibility(Figure 
7c). Interaction energy analysis showed favourable 
electrostatic interactions counterbalanced by 
unfavourable steric clashes, a common trade-off 
in molecular recognition(Figure 7e). Variable 
hydrogen bonding patterns suggested a highly 
dynamic binding mode contributing to stability 
and specificity(Figure 7d). SASA fluctuations 
reinforced the dynamic nature of the system 
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undergoing conformational changes that can 
modulate biological activity(Figure 7e). Overall, 
the simulations highlighted the interplay between 
favourable/unfavourable interactions, dynamic 
binding mode, and the role of structural flexibility 
in modulating the phytochemical’s bioactivity. 
Further studies are warranted to confirm the 
neuroprotective and anti-inflammatory properties 
of these marine natural product hits.

Conclusion

	 The present in-silico study of screening 
marine phytochemicals for inhibiting human IêK 
enzyme has provided a good molecular insight 
into the interactions of human IêK enzyme. The 
study revealed seven potential inhibitors of the 
marine phytochemical category as good human IêK 
enzyme inhibitors and thus potent AD therapeutic 
options to be evaluated further at in-vitro and/
or in-vivo levels. In particular, 8,11-dihydro-1-
methoxylaurokamuren-12-ol with CMNPD ID 
25050 is predicted to show maximum inhibition of 
the human IêK enzyme. The molecular dynamics 
simulations elucidated the binding dynamics of 
8,11-dihydro-1-methoxy laurokamuren-12-ol with 
NF-êB, revealing the interplay between favourable 
and unfavorable interactions, and the significance 
of structural flexibility in modulating bioactivity,  
thus proposed as most potential AD therapeutics 
for further evaluations. The virtual high throughput 
screening study also provides a rational starting 
point for identifying novel IêK protein-targeted 
neuroprotective agents from marine sources.
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