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	 The Marburg virus (MARV) causes severe hemorrhagic fevers with life-threatening 
symptoms. A study aimed to design a multi-epitope vaccine (MEV) using immunoinformatic 
approaches for treatment for MARV infection. A comprehensive screening procedure was used 
to identify immunogenic protein sequences within seven crucial proteins from MARV that could 
trigger T-cell and B-cell responses. A computational analysis of these epitopes showed a non-
allergenic nature and significant antigenicity, validating the structural parameters. The final 
construct of virus-like particle (VLP) was used for mutation using machine-learning model. A 
machine learning model, DeepPurpose framework was developed and trained to screen out 
the best vaccine construct/VLP sequence among all the generated sequences. Best variant VLP 
had the predicted IC50 of 0.021 nM with the receptor TLR4. Model structures of the native and 
mutant VLP with prediction confidence scores of 96.2% and 88.5% were selected for molecular 
docking and molecular dynamic simulation to assess stability. RMSD of native construct 
ranged from 1.75 to 2 nm, while variant had 1.5 to 1.75 nm which was lower than the wild 
type, suggesting more stable conformation. The VLPs when bound with the toll-like receptor-4 
(TLR4), plays a role in innate immunity. Designed VLP-TLR4 complex showed high stability 
post MD simulation of 500 ns and had strong average binding free energy (?G) of -520.13 (kcal/
mol). The vaccine's stability helps it trigger a tailored immune response, making it an attractive 
candidate for viral neutralization strategies. The study showed a computational pipeline for 
designing and validating MARV multi-epitope vaccines using physics and machine learning. 
Additionally, the variant VLP exhibited favourable properties, suggesting its potential suitability 
for experimental validation, which could provide valuable insights. Nonetheless, the present 
study relies on in silico methodologies instead of in vivo or in vitro investigations, which is a 
limitation. This approach has promising applicability in the design of novel peptide vaccines 
against the MARV.

Keywords: Immunoinformatic; Marburg virus; Molecular Docking; Molecular Dynamics Simulation; 
Vaccine Design; Virus-like particle (VLP).

	 The Marburg virus (MARV) is classified 
within the Filoviridae family, specifically within 
the genus known as Marburg virus. This genus 
encompasses both the MARV and the Ravn virus1. 

The primary reservoir for Marburg infection is bats, 
whereas monkeys serve as the intermediate host. 
The transmission of the virus occurs through various 
mechanisms, including aerosol transmission, direct 
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contact, and ingestion2. Marburg virus Infection 
causes severe haemorrhagic fever outbreak in 
Germany and Belgrade, Yugoslavia (now Serbia) 
in 1967. The outbreak began from non-human 
primates that were introduced from Africa3. 
The two major outbreak of Marburg infection 
occurred in 1998 and 2004, at Durba, DRC and 
Uige Province, Angola respectively4. Currently, 
the outbreak of MARV disease was documented 
in August 2021 inside the Guéckédou prefecture in 
Guinea. A total of 173 individuals were identified 
as contacts, of which 14 were classified as high-
risk contacts due to their level of exposure5. 
Additionally, in Feb 2023 the outbreak was 
occurred in Africa, which was officially reported 
from Equatorial Guinea, that further confirmed by 
the Institute Pasteur Laboratory in Dakar, Senegal. 
During this outbreak, the fatality rate of Marburg 
virus disease (MVD) reached a maximum of 
88%6. This showed the Marburg virus infection 
is associated with significant mortality rates, and 
though multiple studies have been performed, 
there is devoid of specific treatment for this deadly 
virus. This remains a necessity for further progress 
in the drug discovery process pertaining to the 
sickness caused by Marburg infection. In recent 
times, there have been notable advancements in 
in-silico investigations, leading to the development 
of several prediction servers that employ specific 
algorithms for protein analysis. These servers, 
together with numerous in-silico tools, have proven 
to be valuable in predicting successful drugs 
against Marburg illness, as evidenced by multiple 
studies7. Immunoinformatics is also employed 
in the development of chimeric vaccines that are 
based on T cells and B cells epitopes targeting 
diverse diseases including MARV infection8. 
	 Here, for the construction of a subunit 
vaccine on multiple epitopes against the MARV, 
ideal protein markers were selected. MARV is 
composed of seven key proteins 9,10. However, 
proteins like VP35 and VP40 have shown 
indication to trigger host immune response and 
thus considered ideal for vaccine construction‘. 
Majorly, utilising T cell and B cell epitope regions 
derived from proteins has the potential to further 
enhance the development of a highly effective and 
widely applicable vaccine, which might serve as 
an active strategy to hinder the progression of the 
virus11. In the present study, to develop a vaccine 

candidate targeting the MARV, a selection process 
was applied to identify various antigenic epitopes 
to construct a virus-like-particle (VLP). A machine-
learning based model was also developed to 
perform mutation and screen the best variant VLP. 
In an innovative approach to vaccine development 
targeting the optimization of a vaccine construct or 
VLP sequence, our study undertook the systematic 
modification of specific linker regions within the 
sequence. Mutations were added using a custom 
Python script. 
	 A machine learning model was developed 
and improved using the DeepPurpose framework 
to explore the extensive range of potential vaccine 
candidates/VLPs created by these mutations. 
Furthermore, molecular dynamics simulation was 
performed for protein-protein interaction analysis 
of the constructed vaccine candidate against its toll-
like receptor. These findings provide a foundation 
for the development of a subunit vaccine that can 
potentially show a robust immunological response 
against the MARV infection. The integration of 
advanced computational techniques in the selection 
and analysis of epitopes ensures a comprehensive 
approach towards vaccine design. The strategy 
employed can produce highly effective vaccine 
construct. The use of such in-silico methods serves 
as a testament to the evolving landscape of vaccine 
research, where precision and efficiency are 
paramount. Additionally, the selected epitopes were 
subjected to extensive immunoinformatic analysis, 
calculating factors that includes antigenicity, 
allergenicity, and conservancy, to validate their 
efficacy as vaccine candidates. This multi-faceted 
approach underscores the importance of a thorough 
and methodical process in vaccine development, 
majorly for the highly virulent pathogens, MARV. 

Material and Methods

	 An effectual set of computational 
procedure was employed utilizing various 
immunoinformatic and other in silico approach, as 
illustrated in Figure 1 and elaborated in subsequent 
sub-sections.
Protein Selection and Analysis
	 Data  from experimental  epi tope 
determination assays in MARV protein were utilised 
to select vaccine candidates on the BV-BRC (https://
www.bv-brc.org/) server 12. This server listed 
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MARV proteins that have performed acceptable 
in experimental testing and may be targeted for 
epitopes. Protein sequences were obtained from 
UniProt 13 using the Ids P27588 (Nucleoprotein), 
P35253 (Envelope glycoprotein), P35260 (Matrix 
protein VP40), P35259 (Polymerase cofactor 
VP35), P31352 (RNA-directed RNA polymerase 
L), and P35258 (Transcriptional activator VP30) 
and saved in FASTA format. 
Prediction of Antigenicity, Allergenicity and 
Transmembrane Helices 
	 The evaluation of antigenic properties 
for the extracted Marburg protein sequences 
was performed using the VaxiJen v2.0 platform 
14. Additionally, the AllergenFP v1.0 15 platform 
was employed to determine allergenic potential. 
Furthermore, for insights into the transmembrane 
helices, the TMHMM - 2.0 platform was utilized 
16. Subsequently, three proteins were selected for 
epitope prediction based on their antigenicity 
prediction scores. 
Epitopes Prediction and Screening
	 This study found numerous epitopes 
for three selected viral proteins. NetCTL v1.2 
predicted CTL epitopes 17. Next, the IEDB tool 
was used to find MHC-I alleles that can bind to 
a viral peptide 18. Additionally, the IEDB server 
predicted HTL epitopes and alleles for the three 
selected proteins19,20. Later, ABCpred predicted 
linear B lymphocyte (LBL) epitopes 21,22. The 
MHC allele-containing epitopes were tested for 
immunogenicity, antigenicity, allergenicity, and 
toxicity utilising platforms (http://tools.iedb.
org/immunogenicity/), VaxiJen 2.0, AlgPred 
2.0, and ToxinPred 2, mostly for CTL epitopes. 
Similar study was performed for the HTL 
epitopes. IFNepitope 23, IL4pred 24, and IL10pred 
25 were utilised to predict IFN, IL4, and IL10 
cytokines with threshold values of 0.2, 0.2, and 
0.3, respectively. Immunogenicity, antigenicity, 
allergenicity, and toxicity were anticipated using 
web-based servers VaxiJen 2.0, AlgPred 2.0, and 
ToxinPred 2.0 to screen LBL epitopes.
Vaccine Construct Formulation
	 The design of the vaccine involved the 
incorporation of specific epitopes, including 
HTL, CTL, and LBL, derived from precisely 
selected MARV proteins. The TLR agonist (50s 
ribosomal protein L7/L12) referenced as NCBI - 
P9WHE3 was employed as an adjuvant26. The L7/

L12 (P9WHE3) was combined to the vaccine’s 
front using the bi-functional linker, EAAAK. 
Conversely, the chosen LBL, CTL, and HTL 
were integrated using Lys-Lys (KK), Ala-Ala-
Tyr (AAY), and Gly-Pro-Gly-Pro-Gly (GPGPG) 
linkers, respectively27. The AAY linker amplifies 
the immunogenic response of the multi-epitope 
vaccination28. Livingston and colleagues (2002) 
conceived the GPGPG linker aiming to function 
as a flexible gap. The efficacy of GPGPG linker in 
triggering TH lymphocyte (HTL) reactions, crucial 
for designing a multi-epitope vaccine 29,30. 
Machine Learning Guided Mutation
	 The vaccine construct/VLP sequence 
was taken and linkers from it were extracted out. 
Mutations were made at specific residues to serve 
as linkers to strengthen the interaction of VLP. Each 
variant was then examined for its affinity and the 
mutation was carried out by isolating all the linker 
residues. The linkers underwent mutation using a 
Python script. Linkers: EAAAK, AAY, GPGPG, 
KK. Variants created for each linker - Linker_1 – 
EAAAK generated 3200000 variants, Linker_2 – 
AAY generated 8000 variants, Linker_3 – GPGPG 
generated 3200000 variants, Linker_4 – KK 
generated 400 variants. Once the variants stretch 
were generated, they were screened based on their 
affinity using the trained ML model. A machine 
learning model using DeepPurpose framework31 
was developed and trained to screen out the 
best vaccine construct/VLP sequence among all 
the generated sequences (Figure 3). The model 
architecture involves a dimension of hidden layers: 
64, 32, train epochs: 150, learning rate: 0.001 and 
batch size: 16. This predictive model was trained 
on a dataset obtained from Skempi v2.032, which 
contained 344 datapoints. The training dataset 
included protein and peptide sequences and the 
affinity between them. This dataset was divided 
into training, validation and test dataset with 70% 
of the data for training, 10% for validation and 
20% for testing. The sequences were encoded using 
several encoders where Conjoint triad encoder 
provided by DeepPurpose outperformed. The 
affinity value was normalized before proceeding 
with the model training. The normalization of 
the affinity was achieved by calculating negative 
logarithmic values for each and dividing the 
resultant with corresponding peptide sequence 
length. The encoded sequences along with 
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normalized affinity scores were fed to the model for 
training and coefficient of determination (R2) was 
calculated to evaluate the accuracy of the model. 
The multiple generated variant sequences were 
encoded and fed to the trained model to predict 
the best variant linker sequence among them. A list 
of best predicted linkers in each case was formed 
and based on this list multiple variants of vaccine 
construct was generated. The generated variants 
also included wild forms of the linkers to include 
combination effect of linkers in the study. The 
variants were fed to the trained model and best 
predicted variant was selected for further analysis. 
Figure 2 explained the pipeline for selecting the 
variant vaccine construct/VLP through ML. 
Antigenicity, and Allergenicity Evaluation 
	 The constructed vaccine/VLP for both 
wild and variant was put through multiple analyses 
as depicted in Figure 2. It started with amino 
acid composition analysis of the constructed 
vaccine sequence. Furthermore, several platforms 
were used to predict the antigenic and allergenic 
properties of the vaccine design, this includes 
Vaxijen v2.0, Scratch protein prediction platform, 
AllerTOP v. 2.0, and AllergenFP v.1.0. 
3D Structure Modeling and Validation 
	 The protein tertiary (3D) structure of 
wild and variant VLP was predicted using Alpha 
Fold33. The predicted models underwent validation 
through the ProCheck online platform34.  The 
modelled structure was evaluated using ProCheck 
to assess the quality of the structure based on the 
fraction of residues in most favourable region of 
the Ramachandran plot.
Molecular Dynamic Simulation of Vaccine 
Construct
	 Based on the ProCheck results the wild 
and variant VLP was used for MD simulation 
study. The GROMACS 2021.2 software package 
was used to perform molecular dynamics 
simulations on both the VLPs. The simulation 
software uses the CHARMM36 force field for 
the parametrization35,36. The protein was solvated 
within a cubic simulation box with recurring 
boundary parameters using the TIP3P hydration 
model37, maintaining a solvent density at 0.997 g/L. 
The complete system was solvated at a pH of 7.4, 
after incorporating sodium (Na) and chloride (Cl) 
ions and setting the temperature at 310 K. Using the 
steepest descent technique, the complex’s energy 

was optimized over 50,000 cycles. The extended 
electrostatic interactions were conducted using the 
particle mesh Ewald technique38. The simulation 
was performed over a duration of 300 ns using a 
V-scale thermostat and under constant pressure 
conditions using Parrinello-Rahman pressure 
coupling method. The simulated trajectory was 
captured at consistent spans of 10 ps of time frame 
to calculate various parameters including the root 
mean square deviations (RMSD), root mean square 
variations (RMSF), the surface area accessible to 
solvents (SASA) and principal component analysis 
(PCA). The post MD analysis was performed on 
the visual platform called “Analogue” developed 
by Growdea Technologies39,40 (https://growdeatech.
com/Analogue/). Binding energy was calculated 
by utilizing the GROMACS plugin known as 
gmx_MMPBSA41. The MM/GBSA (Molecular 
Mechanics/Generalized Born Surface Area) 
approach was used for the determination of the 
binding free energy of the complex over the last 
20 nanoseconds of the simulation.
Molecular Docking of Vaccine Construct
	 Structural coordinate for the TLR4 
complexes was collected from the Protein Data 
Bank, with PDB ID: 4G8A. The extraneous 
heteroatoms and chains B, C, and D were then 
removed using the Pymol software42. Later, 
Swiss PDB viewer tool was used to fix the 
missing residues 43.  Both mutated and original 
vaccine constructs (VLPs) were docked with 
TLR4 (PDB ID: 4G8A) using ClusPro tool 
44. This application is a web-based automated 
protein”protein or peptide”peptide docking system. 
The docking programme assesses the potential 
surface complementarities of putative complexes. 
As a result of the clustering properties, a concise 
inventory of putative complexes is generated by 
the programme.
MD Simulation of Docked Complex
	 Furthermore, the docked complex of the 
best performing VLP with TLR4 was used for MD 
simulation of 500 ns to evaluate the stability and 
binding ability.  MD simulation was performed 
with the same method as mentioned in the section 
2.7. Additionally, the binding free energy and 
the energy contribution of the residues were also 
calculated using the same protocol (MM/GBSA) 
as mentioned in the section 2.7. 
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Molecular Dynamics Vaccine-TLR4 Complex
	 Simulation of Vaccine-TLR4 complex was 
performed using the same protocol as discussed in 
the section 2.7. However, here the simulation time 
for the production run was set as 500 ns. 

Results 

Primary Analysis 
	 A comprehensive search was performed 
on BV BRC database that resulted in total of 
266 assays for the epitopes. Among the various 

Fig. 1. Immunogenicity Screening and Epitope Prediction Process for Vaccine Development: This flowchart 
details the stages involved in selecting viral proteins for vaccine formulation, starting with sequence retrieval and 
initial screening for antigenicity and allergenicity. Screened proteins are then analyzed for epitope prediction, 
identifying helper T-lymphocyte (HTL), cytotoxic T-lymphocyte (CTL), and linear B-cell lymphocyte (LBL) 

epitopes. Further screening evaluates immunogenicity, antigenicity, allergenicity, and toxicity, leading to the final 
vaccine construct, with the integration of suitable adjuvants and linkers.
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Fig. 2. Workflow for Vaccine Design: This flowchart outlines the step-by-step process in vaccine development, 
starting from the initial vaccine construct analysis, including assessments of molecular weight, pI, (Isoelectric 
point), antigenicity and allergenicity. It proceeds through secondary structure prediction and structure validation, 
which includes molecular docking with Toll-like Receptors (TLRs) and binding energy analysis. Parallel to this is 
the generation and prediction of VLP variants using a machine learning model, which feeds into the selection of 
the best linker for the VLP constructs.

experimental assays conducted for determining 
these epitopes, a total of 57 assays demonstrated 
positive outcomes. The positive indications were 
subsequently classified into four distinct groups, 
distinguished by the precise viral components 
that they selectively targeted. The distribution 
of positive assays is: (a) viral envelope protein 
showed positive outcomes in a total of 22 assays, 
(b) viral nucleoprotein showed positive outcomes 
in 11 of the assays, (c) viral matrix protein showed a 
positive result in a 1 assay, and (d) viral polymerase 
showed positive indications in 23 cases. This study 
showed that envelope protein and polymerase 
had maximum number of assays for the epitope 

determination. Polymerase is a heavy protein 
and most likely to find epitopes on it. However, 
envelope protein has significantly smaller sequence 
and the protein is on the surface of the virus and 
thus should be considered as most potential protein 
for vaccine design. 
Protein Retrieval and Analysis
	 The MARV contains seven structural 
proteins: (1) nucleoprotein, (2) envelope 
glycoprotein, (3) matrix protein (VP40), (4) 
polymerase co-factor (VP-35), (5) RNA directed 
RNA polymerase L, (6) transcriptional activator 
(VP30), and (7) membrane associated protein 
(VP24). Later, the UniProt database was used to 
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Table 1. Selected structural proteins from Marburg virus and their vaccine related parameters including 
antigenicity, allergenicity and Number of Tm helices

Uniprot ID	 Antigenicity	 Allergenicity	 Number of Tm helices 

P27588	 0.4761 Probable Antigen	 Probable Non-Allergen	 0
P35253	 0.5481 Probable Antigen	 Probable Non-Allergen	 1
P35260	 0.4107 Probable Antigen	 Probable Non-Allergen	 0
P35259	 0.4360 Probable Antigen	 Probable Non-Allergen	 0
P31352	 0.4518 Probable Antigen	 Probable Non-Allergen	 0
P35258	 0.5636 Probable Antigen	 Probable Non-Allergen	 0
P35256	 0.5423 Probable Antigen	 Probable Non-Allergen	 0

Fig. 3. Neural Network Encoding of Amino Acid Sequences using DeepPurpose framework: This diagram 
represents a machine learning model where sequences of amino acids are input into an encoder. The encoder’s 
role is to convert the raw sequence data into a format suitable for the neural network to process. Subsequently, 
these transformed features are passed through various layers of the network (depicted as pink for input and 

yellow for hidden layers) to eventually arrive at an output (shown in blue). This model was used in this study to 
predict the affinity of the sequences. 

retrieve their respective protein sequences as shown 
in supplementary Table S1. 
Antigenicity and Allergenicity 
	 IFN-gamma prediction accuracy was 
81.39%, while IL4pred and IL10pred exhibited 
75.76% and 81.24% accuracy, respectively. Only 
one peptide matched all selection criteria against 
the first protein. However, no peptide met the 
selection criteria for the other two proteins.
	 A comprehensive examination was 
carried out on a group of seven distinct proteins to 
understand their vaccine related properties. This 
analysis showed that these proteins possess a high 
probability of being recognized as antigens while 
concurrently exhibiting low chances for allergenic 
reactions. Notably, among these, only a one protein 
showed the presence of transmembrane helical 

activity, a feature that differentiated it from other 
proteins. The detailed attributes of these proteins 
are systematically catalogued in Table 1, that 
demonstrate their potential to be considered as 
potential protein to extract vaccine construct.
	 The objective of this investigation 
was to further narrowed down based on the 
antigenic properties of the proteins. Three proteins, 
UniProt IDs: P35253 (Envelope glycoprotein), 
P35258 (Transcriptional activator VP30), and 
P35256 (Membrane-associated protein VP24) 
were identified as prime candidates for further 
examination based on their antigenicity score 
(shown in Table 1). The selection criterion pivoted 
mainly on their marked antigenicity, which signifies 
their potential role in triggering an immune 
response. This aspect is critical, as the antigenic 
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Table 3. Correlation of determinants 
(R2) for the training model of using the 
different encoders. These encoders of the 
DeepPurpose framework was used for 
encoding the sequences for using in the 

ML-model

Encoder	 R-squared

AAC	 0.415
PseudoAAC	 0.825
Conjoint_triad	 0.966
Quasi-seq	 0.885
ESPF	 0.680
CNN	 0.919
CNN_RNN	 0.940
Transformer	 0.925

Table 4. Final Wild-Type and Variant Virus-Like Particle (VLP) Construct Sequences. The black font of the 
sequence represents the adjuvant, yellow represents the HTL epitopes, blue represents the CTL and LBL epitopes 

and underline amino acids represents the linkers

nature of a protein determines its interaction with 
the host’s immune system, and consequently, its 
role in various biological processes or therapeutic 
applications. Moreover, all the proteins were 
predicted as non-allergen, this provides the safety 
aspect of these protein to be used as vaccine. 
The significance of these findings highlights 
the potential applications of these protein in the 
immunology for vaccine design. The antigenic 
properties of these proteins could pave the way 
for novel approaches in vaccine development or 
in the design of targeted therapies. Understanding 
the allergenicity is equally crucial, as it ensures 

the safety and efficacy of any derived vaccine 
candidate. The identification of transmembrane 
helices in one of the proteins opens up avenues for 
exploring its role in cellular processes, possibly 
providing insights into the mechanisms of cellular 
transport or signal transduction.
Prediction of CTL, HTL, LBL Epitopes
	 A significant focus was placed on 
the prediction of Cytotoxic T Lymphocyte 
(CTL), Helper T Lymphocyte (HTL) and Linear 
B-Lymphocyte (LBL) epitopes derived from 
the identified proteins of MARV. This phase of 
the study was instrumental in predicting a total 
of 314 potential CTL epitopes. These epitopes 
represent specific sequences within the complete 
protein that are capable of triggering an immune 
response, specifically the activation of CTLs, 
which play a crucial role in the body’s defence 
mechanism against pathogens. Followed by the 
identification of these potential CTL epitopes, a 
rigorous evaluation process was initiated. This 
involved an in-depth assessment of various 
characteristics of the epitopes, including their 
immunogenic properties, antigenic features, and 
potential allergenic reactions. Additionally, the 
toxicity of these epitopes was also predicted. The 
criteria for selection of epitopes were based on the 
result of these assessments.
Cytotoxic T Lymphocyte (CTL)
	 The analysis yielded noteworthy results 
for the protein sequence P35253. Out of the 
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Table 5. Comparative biophysical property analysis of wild-type and variant VLP Constructs. The 
biophysical properties, include amino acid count, molecular weight, theoretical isoelectric point 

(pI), charge distribution, instability index, and average hydropathicity (GRAVY). 

Characteristics	 Wild VLP	 Variant VLP

Number of amino acids	 352	 352 
Molecular weight	 38307.04 Da	 38422.43 Da 
Theoretical pI	 6.58	 8.73 
Total number of negatively charged residues (Asp + Glu)	 42	 42 
Total number of positively charged residues (Arg + Lys):	 40	 45 
The instability index (II)	 38.01	 38.12 
Grand average of hydropathicity (GRAVY)	 -0.101	 -0.137 

Fig. 4. Mutation of VLPs using ML model: This illustration represents the process of mutation of the linkers used 
by the adjuvants, CTL, HTL and LBL epitopes using the Python script. The ‘Conjoint triad’ of the DeepPurpose 
framework was further used for screening sequences based on affinity. The VLP variants were generated and 

using the conjoint triad screened for the best affinity. 

assessed epitopes, 10 epitope peptides were found 
to adhere strictly to the established selection 
criteria for CTL. These peptides showed promise 
in context to their immunogenic potential, 
indicating their capability to effectively stimulate 
an immune response. Out of this subset, the top 
two peptides were chosen based on their superior 
immunogenicity. This selection underscores the 
potential of these peptides in eliciting a robust 

immune response, which is a key consideration 
in vaccine development and immunotherapy.  In 
the case of protein sequence P35258, a similar 
pattern was observed. Seven peptides from this 
sequence followed the stringent selection criteria. 
As with P35253, the top two peptides were selected 
in this case, primarily based on their heightened 
immunogenic properties. This choice reflects a 
focused approach towards identifying epitopes with 
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Fig. 5. 3D structural comparison of vaccine construct predicted by AlphaFold for (a) Wild VLP and (b) Variant 
VLP. This illustration presents the three-dimensional structures of wild-type and variant VLPs, highlighting 
differences in secondary structures such as alpha-helices and beta-sheets with the adjuvants, CTL, HTL, LBL 

epitopes and linkers highlighted in the structures. 

optimal immune response triggering capabilities. 
Similarly, for the protein sequence P35256, the 
analysis showed four peptides that satisfied the 
selection criteria. Following the established 
protocol, the top two peptides were selected, with 
their selection being primarily driven by their 
immunogenicity. This selection process was critical 
in narrowing down the candidates to those with 
the highest potential for practical application in 
immunological study. Table 2 shows the selected 
epitope peptide from the three proteins with their 
vaccine related properties. 
Helper T Lymphocyte (HTL)
	 Once the potential HTL epitopes were 
identified, a comprehensive assessment was 
conducted. This evaluation was multifaceted, 
examining the immunogenicity, antigenicity, 
allergenic potential, and toxicity of the epitopes. 
The criteria for this assessment were meticulously 
defined in Table 2, providing a structured properties 
for evaluating the epitopes. The assessment showed 
that for P35253 protein, it was found that only one 
epitope peptide satisfied all the predefined criteria 
of vaccine candidate. This peptide stood out due 
to its ability to follow the stringent requirements, 

marking it as a promising candidate for vaccine 
construct. Remarkably, none of the epitope 
peptides from the P35258 protein sequence met 
the established criteria, indicating a divergence 
in their potential as effective HTL epitopes. 
This result underscores the complex nature of 
protein-epitope interactions and the variability in 
immunogenic potential across different protein 
sequences. Regarding the protein sequence of 
P35256, the findings were mixed. While one 
peptide corresponding to this protein satisfied most 
of the specified requirements, it fell short in one 
crucial aspect i.e. its ability to induce Interferon 
(IFN). This negative performance in IFN induction 
is significant, as IFN plays a vital role in the 
immune response, particularly in antiviral defence 
mechanisms.
Linear B-Lymphocyte (LBL)
	 Subsequently, the peptides underwent 
a LBL screening process for the specified 
proteins, focusing on criteria of immunogenicity, 
antigenicity, allergenicity, and toxicity. The results 
of this screening are detailed in Table 2, which was 
utilized for the development of the vaccine. As a 
result, in the case of protein P35253, 13 peptides are 



1474Suyash et al., Biosci., Biotech. Res. Asia,  Vol. 21(4), 1463-1484 (2024)

Fig. 6. Comparative post molecular dynamics analysis of wild-type and variant VLP: This set of graphs presents 
a detailed 300 ns molecular dynamics simulation, comparing wild-type and variant protein forms. The analysis 
includes root-mean-square deviation (RMSD) over time (a), root-mean-square fluctuation (RMSF) per residue 
(b), the solvent accessible surface area (SASA) over time (c), and a principal component analysis (PCA) scatter 

plot (d) to show the conformational space explored by both proteins.

identified that adhere to the established selection 
criteria, and subsequently, the top 2 peptides are 
chosen based on their immunogenicity profile. 
Similarly, for protein P35258, 4 peptides meet the 
selection criteria, and the top 2 peptides are selected 
based on their immunogenicity characteristics. 
Likewise, in the context of protein P35256, 3 
peptides are found to satisfy the selection criteria, 
and the top 2 peptides are selected on the basis of 
their immunogenicity attributes.
Human Homology Comparison and MHC 
Cluster Analysis
	 Identified epitopes (shown in Table 2) 
were sequentially compared against the complete 
human proteome to find the similar segments of 
sequence. The CTL, HTL, and LBL epitopes that 
had been screened had exhibited no homology 
with the human proteome, thereby validating their 
role as antigens or exogenous entities for humans.  
Using the IEDB platform, the MHC-I alleles 

that had interactions with the epitope derived 
from the chosen structural protein were grouped 
together. Here, 25 alleles from each group were 
incorporated. 
Designing of Vaccine construct and Evaluation 
	 The construction and assessment of 
the vaccine involved a strategic assembly for 
combination of epitopes targeting CTL, HTL, and 
LBL. These were linked using linkers, “EAAAK” 
sequence was used to connect the adjuvant with the 
CTL epitopes. Adjuvants were added to the epitope 
sequence to improve the immune response. It also 
assists the vaccine candidate to create long lasting 
immune response. Moreover, two CTL epitopes 
were connected using “AAY” sequence linker. 
Similarly, “GPGPG” was used to connect two HTL 
epitopes, and “KK” for LBL epitope connectivity. 
The final vaccine construct is shown in the Table 
4. The adjuvant used in the vaccine was identified 
as the TLR agonist, specifically the 50S ribosomal 
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Fig. 7. Free energy landscape for the (a) Wild VLP (b) Variant VLP: These contour maps represent the free 
energy landscapes of a molecular system as a function of the first two principal components (PC1 and PC2). The 
color gradients indicate regions of varying free energy, with red areas representing higher energy states and blue 
areas indicating lower energy states, which are often associated with more stable conformations in the context of 

molecular dynamics simulations.

Fig. 8. Comparative radar chart of binding free energy for wild and variant VLP: This dual radar chart illustrates 
the binding free energy values across a series of molecular models (a) and (b). Each spoke on the radar represents 

a different model, with numerical values indicating the magnitude of binding free energy, a critical factor in 
assessing the stability and affinity of molecular interactions. 

protein L7/L12, catalogued under the NCBI ID 
P9WHE3. 
Machine Learning Based Mutation 
	 The construction of a variant sequence 
was initiated by extracting linker sequences, 
followed by their subsequent mutation through a 
Python script. The linkers investigated in this study 
were EAAAK, AAY, GPGPG, and KK, resulting in 
mutations of 3,200,000 for EAAAK and GPGPG, 

8,000 for AAY, and 400 for KK, respectively. A 
machine learning model was developed using 
the DeepPurpose framework to systematically 
assess and determine the most effective vaccine 
construct from the extensive collection of produced 
mutations. Multiple encoders were used for model 
training and r-squared for each case was noted as 
shown in Table 3. Based on R2, Conjoint triad was 
used as encoder for affinity prediction. 
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Fig. 9. Post MD analysis of docked variant VLP-TLR complex over the 500 ns MD simulation: (a) RMSD curve 
for variant VLP-TLR complex calculated during the 500 ns MD simulation. (b) Bar plot representing binding 
free energy (ÄG) of the variant VLP-TLR complex. (c) Energy Contribution for residues of variant VLP-TLR 

complex. 

	 Sequences encoded using the Conjoint 
triad encoder, a feature of the DeepPurpose toolkit, 
were used for model training. Before model training, 
affinity values were normalised by transforming 
them into their negative logarithmic equivalents 
and then normalising these values according to the 
length of their respective sequences. This technique 
enabled the model’s training phase, during which 
the encoded sequences and their normalised affinity 
scores were used as input.  
	 Upon training completion, the model was 
tasked with evaluating the generated sequences to 
pinpoint the most promising linker variant. The top 
10 variants for EAAAK were, IITTE, MMNMQ, 
FFHFH, GVYKG, RQLQQ, AAQRA, WVNNN, 
DMDDE, SCSCC and EPPLP, similarly, for 
GPGPG the top 10 variants were, SFSSM, TRTYT, 
DLWDD, MRAAA, GGNEG, HHHII, MEREE, 
CCQMQ, VVKKV and YPPLP. The predicted 

affinity ranged from 0.77 to 1.79 for EAAAK while 
it ranged from 0.66 to 1.98 for GPGPG. The AAY 
linker had top 32 variants showed same predicted 
score of 0.852 and thus, these all were selected. 
Unlike, the three mentioned linkers, KK being only 
two residues long showed same predicted score 
for all the 400 variants and thus, the wild form 
itself was used for further study. The selection of 
notable mutants for each linker was conducted, 
and these variants were combined into diverse 
variant VLP configurations. These configurations 
were further enhanced by integrating wild-type 
linkers to guarantee their inclusion in the study with 
entire sequences, hence eliminating any potential 
bias. A total of 3,993 variant VLPs were produced 
for the purpose of predicting affinity. The trained 
model was subsequently provided with these 
VLP variations to predict the optimal sequence, 
which was then utilised for further research. The 
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optimal vaccine design had an affinity of 0.021, 
as anticipated by the machine learning model. The 
best predicted variant VLP sequence is shown in 
Table 4. Illustration in the Figure 4 explained the 
screening of the best variant VLP using ML-based 
model. This approach underscores the integration 
of computational biology with machine learning 
to streamline the identification and optimization 
of VLPs, potentially expediting the development 
of effective immunogens.
VLP Properties Evaluation
	 The properties of the wild and variant 
VLP were analysed and listed in the Table 5. This 
wild VLP and variant VLP is composed of 352 
amino acids, culminating in a molecular mass of 
38,307.04 Da and 38422.43 Da, respectively. It 
has an isoelectric point (pI) of 6.58 and 8.73 for 
wild and variant VLP. Its molecular architecture 
comprises 42 negatively charged residues including 
Aspartic acid (Asp) and Glutamic acid (Glu), and 
40 positively charged residues such as Arginine 
(Arg) and Lysine (Lys). The wild VLP and variant 
VLP has an instability index is measured at 38.01 
and 38.12, respectively. Additionally, the Grand 
Average of Hydropathicity (GRAVY) index, noted 
as -0.10 and -0.137, as listed in Table 5, indicates 
the hydrophilic nature of the protein, suggesting 
its structural stability. 
	 The antigenic behaviour and potential 
allergenic reactions were predicted for both 
wild and variant VLP. Here, findings indicated a 
notable antigenicity score of 0.740, which strongly 
suggests the vaccine’s capability to trigger an 
immune response. While variant VLP showed an 
antigenicity score of 0.6730 which was comparable. 
Both wild and variant VLP showed probability of 
being non-allergen. This comprehensive analysis 
is instrumental in advancing the understanding of 
the VLP characteristics and ensuring its efficacy 
and safety. The antigenicity score is particularly 
encouraging, as it points towards the VLP’s 
potential effectiveness in inducing an immune 
response. Similarly, the non-allergenic nature 
reassures its applicability across diverse groups 
without significant risk of allergic reactions. 
Collectively, these findings provide a promising 
outlook for the vaccine’s future application and set 
a foundation for subsequent clinical evaluations.

Three-Dimensional Structure Modelling and 
Validation 
	 AlphaFold (Colab version) was used 
to generate the vaccine construct/VLPs 3D 
structure as shown in Figure 5.  As shown in the 
Figure 5, the two structures were composed of 
the adjuvant, CTL, HTL and LBL epitopes along 
with the linkers. These structures were selected for 
structure validation using Procheck application. 
In this context, the AlphaFold structures of wild 
and variant VLP exhibited 96.2% and 88.5%, 
respectively of amino acid residues in the primary 
preferred region of the Ramachandran plot. Hence, 
the both these structures predicted by AlphaFold 
showed favourable confidence scores from 
Procheck. These structures were further selected 
for molecular dynamics simulation. 
Molecular Dynamics Simulation
	 The wild and variant VLP structures 
were used for molecular dynamics simulation for 
studying the stability and flexibility. Root Mean 
Square Deviation (RMSD) is frequently utilised to 
evaluate the stability of protein structures during 
molecular dynamics simulations. The measurement 
calculates the mean distance between the atoms, 
often the backbone atoms, of aligned proteins. 
Lower RMSD values generally indicate a more 
stable protein structure.
RMSD and RMSF
	 The RMSD graph depicted in Figure 6(a) 
shows the protein structure’s stability throughout 
a 300 ns timeframe. RMSD of the wild fluctuated 
between the range 1.75 nm to 2 nm while variant 
was in the ranged 1.5 nm to 1.75 nm for most of 
the simulation. Both the wild type (in black) and 
the variant (in red) exhibit an early increase in 
RMSD during the simulation, indicating initial 
structural alterations. The variant reaches a lower 
RMSD value compared to the wild type, indicating 
it may attain a more stable conformation faster or 
possess a less flexible structure overall. The root 
mean square fluctuation (RMSF) graph illustrates 
the variability of each residue throughout the 
simulation. Figure 6(b) displayed the RMSF of 
wild-type and variant VLP. The variant shows 
reduced fluctuations compared to the wild type, 
indicating that the mutations may have caused a 
more stable structure, perhaps impacting epitope 
presentation dynamics.
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SASA and PCA
	 The solvent-accessible surface area 
(SASA) graph quantifies the protein’s surface area 
that can be reached by solvent molecules. In the 
Figure 6(c), both the wild type and variant show 
similar trends, with the variant exhibiting slightly 
higher SASA values throughout the simulation, 
which could impact how the immune system 
recognizes and interacts with the VLP. Both showed 
a SASA of 225 nm2 for most of the simulation. 
The principal component analysis (PCA) scatter 
plot (Figure 6(d)) shows the dominant patterns of 
movement in the protein structures. The distinct 
clustering of the wild type and variant indicates 
significant differences in their dynamic behaviors, 
which might have implications for their functional 
activities. The post MD simulation indicate that 
the variant VLP possesses distinct structural 
and dynamic characteristics in comparison to 
the wild type. These differences may play a 
critical role in its efficacy as a vaccine candidate, 
potentially influencing its stability, immune system 
recognition, and interactions with molecules like 
toll-like receptors.
FEL
	 Figure 7 shows the free energy landscapes 
(FEL) for a wild type VLP in 7(a) and a variation 
VLP in 7(b), represented on two main components 
(PC1 and PC2). These landscapes are commonly 
employed to represent the thermodynamic stability 
and conformational states of macromolecules, 
including proteins, in molecular dynamics 
simulations. The FEL is color-coded based on free 
energy values, with blue representing lower free 
energy, suggesting more stability and likelihood 
of the system existing in that state, and red 
representing higher free energy, indicating poorer 
stability. The landscape’s topography indicates the 
quantity of stable states (basins) and the elevation 
of the barriers separating them.
	 Figure 7(a) shows that the wild type 
VLP’s FEL has fewer deep blue patches, indicating 
a reduced amount of very stable conformations. 
Figure 7(b) displays a larger region of deep blue, 
suggesting that the variation VLP exhibits a wider 
array of stable conformations. The variant’s FEL 
shows deeper and more well-defined basins, 
indicating a rougher and thermodynamically 
favourable energy landscape that may lead to a 
larger chance of stable conformations.

	 The RMSD graph shows that the variant 
VLP exhibits increased stability, as evidenced by its 
consistently lower and more stable RMSD values 
over time compared to the wild type. The red line 
showing the change VLP rapidly stabilises and 
retains its initial conformation with minor deviation 
during the simulation. The variant VLP appears 
to be structurally more stable than the wild type. 
The free energy landscapes support the stability 
of the variety VLP, complementing the data. The 
variant landscape has a wider range of low-energy 
conformations, indicated by deeper blue areas, in 
contrast to the wild type. This suggests a more 
advantageous and steady structural state, which is 
crucial for the effectiveness of a virus-Like Particle 
(VLP) in vaccine development. The computational 
investigations suggest that the variation VLP 
reaches structural stability quickly and maintains 
a stable conformation with favourable energy, 
highlighting its potential as a promising candidate 
for vaccine development.
Molecular Docking
	 The wild and variant VLP structures 
after MD simulation were analysed for their 
interaction with TLR4 using molecular docking. 
The Cluspro programme produced 30 unique 
clusters with elevated interaction energy as shown 
in supplementary Table S2. The initial cluster 
displayed binding scores of -1072.7 kcal/mol for 
the variant VLP and -934.8 kcal/mol for the wild 
VLP. This suggests the strong binding of the variant 
VLP to the TLR4 receptor compared to the wild 
VLP. This receptor binds to the foreign pathogen, 
indicating its interaction with the vaccine design, 
which resembles a virus-like particle. This binding 
would additionally stimulate the immunological 
response. 
	 Figure 8 showed a radar chart comparing 
the binding free energy of 30 docked models for 
a wild type and variant virus-like particle (VLP). 
Figures 8(a) and 8(b) indicate that the length of 
each spoke represents the binding free energy of 
each model, where shorter lengths imply stronger 
binding affinity due to lower energy values. The 
green region in Figure 8(a) representing the 
binding free energies of various models is smaller 
than in Figure 8(b), suggesting higher free energy 
values and therefore weaker binding affinities. 
The larger green region in Figure 8(b) suggests 
lower binding free energy values for most models, 
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indicating stronger binding affinities. The variant 
VLP showed decreased binding free energy 
values in most models, suggesting a possible 
stronger binding affinity to its target. These results 
suggest that variant VLP is a more suitable choice 
for advancement, given the lower binding free 
energies.
MD simulation of Variant VLP- TLR4 Complex
RMSD
	 This section involved conducting a 
molecular dynamics simulation to gain an 
understanding of the stability of the TLR4-variant 
VLP complex and to assess the effectiveness of the 
developed vaccine. Root-Mean-Square Deviation 
(RMSD) of both the variant VLP and TLR4 
receptor was calculated over the 500 ns trajectory 
for analysing the deviation of the docked complex. 
Here the RMSD was calculated by aligning the 
other protein. Receptor is aligned and RMSD 
for VLP/vaccine construct calculated and vice 
versa. Figure 9(a) displays the RMSD plot of the 
variant VLP-TLR4 complex. Though, it exhibited 
a greater RMSD, ranging from 2.14 nm to 2.21 
nm, it maintains a stable appearance for most part 
of the simulation frame. The RMSD plot of the 
vaccine-TLR4 complex showed consistent stability 
over the simulation, indicating that variations did 
not cause significant conformational changes and 
the complex remained stable throughout. The 
mean RMSD for the receptor and variant VLP 
was 2.14 ± 0.01 and 2.21 ± 0.03 nm, respectively.  
The stable connection between the VLP and the 
receptor indicates the potential effectiveness of 
the vaccine design in consistently triggering the 
targeted immune response. 
Binding Free Energy
	 The binding free energy of vaccine 
construct-TLR complex was assessed using the 
MM/GBSA methodology. This analysis was 
conducted based on the trajectory data obtained 
from the final 20 nanoseconds of the simulation. 
The complex exhibited a cumulative binding free 
energy (ÄG) of -520.13 (kcal/mol), as represented 
in Figure 9(b). The ÄG calculation of the was 
contributed with the ÄGGAS with -2798.15 kcal/
mol while ÄGSOLV with 2278.03 kcal/mol. 
The negative cumulative ÄG value suggests that 
the formation of the complex is energetically 
favourable when both the gas-phase interactions 
and solvation effects are considered. It was evident 

that the complex exhibited high magnitude of 
minimum binding free energy (ÄG), indicating 
a robust and stable binding interaction between 
vaccine construct and toll-like receptor. This 
observation suggests a favourable and enduring 
interplay between these two macromolecules.
Energy Contribution for Residues
	 Further, the energy contribution of the 
residues of both variant VLP and TLR complex 
was calculated as shown in Figure 9(c). Critical 
residues are highlighted in this analysis which 
contribute to the ability to form stable protein-
protein interactions. It was observed that the TLR 
receptor showed favourable energy contribution for 
residues ARG234 with -14.11 kcal/mol, ARG264 
with -10.94 kcal/mol, GLU266 with -10.6 kcal/
mol, and GLU42 with -10.3 kcal/mol. Further, 
the residues that showed favourable binding free 
energy for the variant VLP were MET1	 with 
-9.23 kcal/mol, ASN172 with -8 kcal/mol, ARG164 
with -7.8 kcal/mol, HIS166 with -6.5 kcal/mol 
and LEU10 with -6.18 kcal/mol. These findings 
highlight the complex interplay of multiple types of 
residue interactions that underpin the stability and 
specificity of the VLP-TLR complex, which may 
be pivotal for the VLP’s immunogenic efficacy. 

Discussion

	 The progress in computational techniques 
has resulted in a substantial reduction in both the time 
and capital expense associated with complicated 
tasks of vaccine design. The conventional method 
of vaccine design is time-consuming that require a 
significant amount of effort even for a single epitope 
vaccine design. Conversely, in silico methods have 
shown high efficiency and can be effectively 
used in the design of multi-epitope vaccines. 
Moreover, the application of well-constructed 
databases containing comprehensive data greatly 
facilitates the availability of required information, 
such as identifying epitopes for a specific protein, 
as demonstrated in the current investigation. 
AI-based tools including AlphaFold have shown 
their efficacy and reliability in the realm of protein 
structure prediction, illustrating the effectiveness 
and dependability of computational methodologies 
in the development and advancement of therapeutic 
treatments. Moreover, previous studies have shown 
implementation of in silico techniques to yield a 
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reliable therapeutic outcome. Sanami. (2021) have 
used similar approach to design a multiepitope 
vaccine against cervical cancer45. Furthermore, 
A S Mustafa, in another study demonstrated the 
development of multiepitope vaccine against 
Mycobacterium tuberculosis showed the accuracy 
of in silico techniques in vaccine design through 
experimental validation. The experimental results 
favored the in silico approach and thus, adoption 
of these techniques considered safe and can yield 
satisfactory results46.
	 In the present study vaccine construct for 
Marburg virus is constructed using its three of the 
most antigenic proteins, (1) envelope glycoprotein, 
(2) transcriptional activator VP30, (3) membrane-
associated protein VP24. Whereas in the study by 
Yosuaf., (2023) they used only glycoprotein to form 
a multiepitope screened vaccine construct against 
the Marburg virus8. Moreover, the final construct 
of the multiepitope vaccine, which includes 
adjuvant (TLR agonist) and linkers, was produced 
through a series of prediction and screening 
stages. The examination of the final vaccine 
design showed promising antigenicity, along with 
the establishment of a strong complex formation 
with Toll-like receptors (TLR). Similarly, in the 
study by Hasan (2019), TLR-8 used as potential 
target47. Additionally, in the study by Soltan (2022) 
TLR-4 also used as potential vaccine binder48. 
Toll-like receptors (TLRs) are proteins essential 
in the human innate immune system, identifying 
and reacting to pathogen-associated molecular 
patterns (PAMPs) to defend against various 
illnesses, including viral infection, by activating 
proinflammatory cytokines and type I interferons. 
Therefore, as an adjuvants TLR agonist used 
for influenza, malaria, tuberculosis and cancer 
vaccines. In this study, the epitopes extracted was 
validated thorough focusing on their allergenicity, 
antigenicity, and solubility. The results indicated 
that while the epitopes were non-allergenic, they 
exhibited significant antigenicity, which led to their 
selection for more detailed analysis. Alligning this 
finding, the study conducted by Sami., as well as 
the investigation by Mustafa and Shantier, also 
showed that the epitopes displayed no allergenic 
properties 9,49. The current study leverages a 
machine learning model within the DeepPurpose 
framework, where in silico methods were first used 
to screen potential epitopes based on their binding 

affinity to immune receptors. This study advances 
further by employing an ML model trained on a 
substantial dataset from Skempi v2.0, enabling 
the analysis of a more extensive array of mutants 
at a fraction of the time. Conjoint triad model was 
used for selecting the best variant VLP based on 
the affinity. Furthermore, the incorporation of 
molecular docking and MD simulation techniques 
established the interaction of the vaccine construct 
with Toll-like receptors (TLRs). This stability 
points to the potential efficacy of the vaccine in 
triggering immune response against MARV.
	 Building on this framework, this study 
is integrating multiple antigenic proteins in the 
vaccine construct that could potentially offer a 
broader immune response than a vaccine targeting 
a single protein. This multi-target strategy might 
confer enhanced protection against diverse strains 
of the Marburg virus, addressing the challenge 
of viral genetic variability. The current study’s 
integration of machine learning to identify the 
best mutant VLP sequence aligns with these 
innovative approaches, showcasing the potential 
for rapid and efficient vaccine development 
through computational methods. Furthermore, 
the incorporation of TLR agonists as adjuvants 
in the vaccine design aligns with emerging trends 
in vaccine development, emphasizing the role of 
innate immunity in enhancing adaptive immune 
responses. The non-allergenic nature of our 
chosen epitopes, coupled with their demonstrated 
antigenicity, underscores the potential for a strong 
and safe immune response. This comprehensive 
approach sets a precedent for future vaccine 
designs, particularly in tackling pathogens with 
high mutation rates and complex pathogenicity.
	 The sole dependence on in silico 
methodologies, which are valuable for initial 
screening and predictions, is one of the main 
limitations of this study. However, they are 
unable to fully replicate the complexities of 
biological systems. Despite their robustness, 
the computational models do not encompass the 
complete spectrum of immune responses that may 
manifest in vivo, including potential unforeseen 
interactions with other immune cells or variations 
in human genetic backgrounds. Additionally, 
the vaccine candidate’s immunogenicity, safety, 
and toxicity must be evaluated in a controlled 
laboratory environment by conducting in vitro 
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studies to validate its predicted efficacy, stability, 
and binding affinities. Furthermore, it is imperative 
to conduct in vivo trials in appropriate animal 
models to assess the vaccine’s capacity to induce 
protective immunity, ascertain the optimal dosage, 
and identify any adverse effects. The vaccine’s 
real-world applicability is still uncertain in the 
absence of these critical experimental validations. 
Consequently, although this investigation 
establishes a critical foundation, additional 
experimental research is necessary to verify the 
vaccine’s clinical application potential.

Conclusion 

	 In this study, a novel peptide vaccine 
against the MARV was designed, utilizing immune-
informatics techniques, machine learning that 
solidified by molecular docking and simulation 
trials. This innovative vaccine design incorporates 
a blend of linear B-cell epitopes with epitopes 
targeting cytotoxic and helper T lymphocytes. 
Following this, an adjuvant and various linkers 
were incorporated to create a cohesive epitope 
structure. This led to the construct of a subunit 
vaccine construct/ virus-like particle (VLP), 
combining B and T cell epitopes connected by 
appropriate linkers. Advanced computational 
and machine learning methods have enabled the 
development and screening of multiple vaccine 
construct/VLP variations that optimise linkers in a 
VLP sequence. The affinity of the wild and variant 
vaccine construct/VLP for TLR-4 was confirmed 
through molecular docking and MM/GBSA that 
established stronger binding with TLR4 to generate 
the immune response. The variant VLP emerges as a 
more promising candidate for subsequent stages of 
vaccine development, highlighting its potential for 
eliciting a robust immunological response against 
its target. The molecular dynamics simulation and 
MM/GBSA binding free energy analysis shows 
that the vaccine-TLR4 complex is structurally 
stable, and has strong and favourable interaction 
over an extensive simulation period. The variant 
VLP exhibited favourable properties that suggest 
its potential suitability for experimental validation. 
The study highlights the variant VLP’s promise as 
a viable candidate for further in vitro and in vivo 
testing. Upon experimental validation, this vaccine 
candidate may provide novel insights into MARV 

neutralisation procedures and aid in the formulation 
of successful treatments.
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