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 The Marburg virus (MARV) causes severe hemorrhagic fevers with life-threatening 
symptoms. A study aimed to design a multi-epitope vaccine (MEV) using immunoinformatic 
approaches for treatment for MARV infection. A comprehensive screening procedure was used 
to identify immunogenic protein sequences within seven crucial proteins from MARV that could 
trigger T-cell and B-cell responses. A computational analysis of these epitopes showed a non-
allergenic nature and significant antigenicity, validating the structural parameters. The final 
construct of virus-like particle (VLP) was used for mutation using machine-learning model. A 
machine learning model, DeepPurpose framework was developed and trained to screen out 
the best vaccine construct/VLP sequence among all the generated sequences. Best variant VLP 
had the predicted IC50 of 0.021 nM with the receptor TLR4. Model structures of the native and 
mutant VLP with prediction confidence scores of 96.2% and 88.5% were selected for molecular 
docking and molecular dynamic simulation to assess stability. RMSD of native construct 
ranged from 1.75 to 2 nm, while variant had 1.5 to 1.75 nm which was lower than the wild 
type, suggesting more stable conformation. The VLPs when bound with the toll-like receptor-4 
(TLR4), plays a role in innate immunity. Designed VLP-TLR4 complex showed high stability 
post MD simulation of 500 ns and had strong average binding free energy (?G) of -520.13 (kcal/
mol). The vaccine's stability helps it trigger a tailored immune response, making it an attractive 
candidate for viral neutralization strategies. The study showed a computational pipeline for 
designing and validating MARV multi-epitope vaccines using physics and machine learning. 
Additionally, the variant VLP exhibited favourable properties, suggesting its potential suitability 
for experimental validation, which could provide valuable insights. Nonetheless, the present 
study relies on in silico methodologies instead of in vivo or in vitro investigations, which is a 
limitation. This approach has promising applicability in the design of novel peptide vaccines 
against the MARV.
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Vaccine Design; Virus-like particle (VLP).

	 The	Marburg	virus	(MARV)	is	classified	
within	 the	Filoviridae	family,	specifically	within	
the genus known as Marburg virus. This genus 
encompasses	both	the	MARV	and	the	Ravn	virus1. 

The	primary	reservoir	for	Marburg	infection	is	bats,	
whereas	monkeys	serve	as	the	intermediate	host.	
The transmission of the virus occurs through various 
mechanisms,	including	aerosol	transmission,	direct	
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contact,	 and	 ingestion2. Marburg virus Infection 
causes severe haemorrhagic fever outbreak in 
Germany	and	Belgrade,	Yugoslavia	(now	Serbia)	
in 1967. The outbreak began from non-human 
primates	 that	 were	 introduced	 from	Africa3. 
The two major outbreak of Marburg infection 
occurred	 in	1998	and	2004,	at	Durba,	DRC	and	
Uige	Province,	Angola	 respectively4.	Currently,	
the	outbreak	of	MARV	disease	was	documented	
in	August	2021	inside	the	Guéckédou	prefecture	in	
Guinea.	A	total	of	173	individuals	were	identified	
as	contacts,	of	which	14	were	classified	as	high-
risk	 contacts	 due	 to	 their	 level	 of	 exposure5. 
Additionally,	 in	 Feb	 2023	 the	 outbreak	 was	
occurred	in	Africa,	which	was	officially	reported	
from	Equatorial	Guinea,	that	further	confirmed	by	
the	Institute	Pasteur	Laboratory	in	Dakar,	Senegal.	
During	this	outbreak,	the	fatality	rate	of	Marburg	
virus	 disease	 (MVD)	 reached	 a	maximum	 of	
88%6.	This	 showed	 the	Marburg	 virus	 infection	
is	associated	with	significant	mortality	rates,	and	
though	multiple	 studies	 have	 been	 performed,	
there	is	devoid	of	specific	treatment	for	this	deadly	
virus. This remains a necessity for further progress 
in	 the	 drug	 discovery	 process	 pertaining	 to	 the	
sickness	caused	by	Marburg	 infection.	 In	 recent	
times,	 there	have	been	notable	 advancements	 in	
in-silico	investigations,	leading	to	the	development	
of	several	prediction	servers	that	employ	specific	
algorithms	 for	 protein	 analysis.	These	 servers,	
together	with	numerous	in-silico	tools,	have	proven	
to	 be	 valuable	 in	 predicting	 successful	 drugs	
against	Marburg	illness,	as	evidenced	by	multiple	
studies7.	 Immunoinformatics	 is	 also	 employed	
in	the	development	of	chimeric	vaccines	that	are	
based	 on	T	 cells	 and	B	 cells	 epitopes	 targeting	
diverse	diseases	including	MARV	infection8. 
	 Here,	 for	 the	 construction	 of	 a	 subunit	
vaccine	on	multiple	epitopes	against	the	MARV,	
ideal	 protein	markers	were	 selected.	MARV	 is	
composed	 of	 seven	 key	 proteins	 9,10.	However,	
proteins	 like	 VP35	 and	 VP40	 have	 shown	
indication	 to	 trigger	 host	 immune	 response	 and	
thus	 considered	 ideal	 for	 vaccine	 construction‘.	
Majorly,	utilising	T	cell	and	B	cell	epitope	regions	
derived	from	proteins	has	the	potential	to	further	
enhance	the	development	of	a	highly	effective	and	
widely	applicable	vaccine,	which	might	serve	as	
an	active	strategy	to	hinder	the	progression	of	the	
virus11.	In	the	present	study,	to	develop	a	vaccine	

candidate	targeting	the	MARV,	a	selection	process	
was	applied	to	identify	various	antigenic	epitopes	
to construct a virus-like-particle (VLP). A machine-
learning	 based	model	 was	 also	 developed	 to	
perform	mutation	and	screen	the	best	variant	VLP.	
In	an	innovative	approach	to	vaccine	development	
targeting the optimization of a vaccine construct or 
VLP	sequence,	our	study	undertook	the	systematic	
modification	of	specific	linker	regions	within	the	
sequence.	Mutations	were	added	using	a	custom	
Python script. 
	 A	machine	learning	model	was	developed	
and	improved	using	the	DeepPurpose	framework	
to	explore	the	extensive	range	of	potential	vaccine	
candidates/VLPs	 created	 by	 these	mutations.	
Furthermore,	molecular	dynamics	simulation	was	
performed	for	protein-protein	interaction	analysis	
of	the	constructed	vaccine	candidate	against	its	toll-
like	receptor.	These	findings	provide	a	foundation	
for	the	development	of	a	subunit	vaccine	that	can	
potentially show a robust immunological response 
against the MARV infection. The integration of 
advanced	computational	techniques	in	the	selection	
and	analysis	of	epitopes	ensures	a	comprehensive	
approach	 towards	 vaccine	 design.	The	 strategy	
employed	 can	 produce	 highly	 effective	 vaccine	
construct. The use of such in-silico	methods	serves	
as	a	testament	to	the	evolving	landscape	of	vaccine	
research,	 where	 precision	 and	 efficiency	 are	
paramount.	Additionally,	the	selected	epitopes	were	
subjected	to	extensive	immunoinformatic	analysis,	
calculating	 factors	 that	 includes	 antigenicity,	
allergenicity,	 and	 conservancy,	 to	 validate	 their	
efficacy	as	vaccine	candidates.	This	multi-faceted	
approach	underscores	the	importance	of	a	thorough	
and	methodical	process	in	vaccine	development,	
majorly	for	the	highly	virulent	pathogens,	MARV.	

Material and Methods

 An effectual set of computational 
procedure	 was	 employed	 utilizing	 various	
immunoinformatic	and	other	in silico	approach,	as	
illustrated	in	Figure	1	and	elaborated	in	subsequent	
sub-sections.
Protein selection and analysis
	 Data 	 from	 experimental 	 epi tope	
determination	assays	in	MARV	protein	were	utilised	
to	select	vaccine	candidates	on	the	BV-BRC	(https://
www.bv-brc.org/)	 server	 12.	 This	 server	 listed	
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MARV	proteins	 that	 have	performed	 acceptable	
in	 experimental	 testing	 and	may	be	 targeted	 for	
epitopes.	Protein	 sequences	were	 obtained	 from	
UniProt 13	using	the	Ids	P27588	(Nucleoprotein),	
P35253	(Envelope	glycoprotein),	P35260	(Matrix	
protein	VP40),	 P35259	 (Polymerase	 cofactor	
VP35),	P31352	(RNA-directed	RNA	polymerase	
L),	and	P35258	(Transcriptional	activator	VP30)	
and	saved	in	FASTA	format.	
Prediction of antigenicity, allergenicity and 
transmembrane helices 
 The evaluation of antigenic properties 
for	 the	 extracted	Marburg	 protein	 sequences	
was	 performed	using	 the	VaxiJen	 v2.0	 platform	
14.	Additionally,	 the	AllergenFP	v1.0	 15 platform 
was	employed	 to	determine	 allergenic	potential.	
Furthermore,	for	insights	into	the	transmembrane	
helices,	the	TMHMM	-	2.0	platform	was	utilized	
16.	Subsequently,	three	proteins	were	selected	for	
epitope	 prediction	 based	 on	 their	 antigenicity	
prediction	scores.	
epitopes Prediction and screening
	 This	 study	 found	 numerous	 epitopes	
for	 three	 selected	 viral	 proteins.	NetCTL	 v1.2	
predicted	CTL	epitopes	 17.	Next,	 the	 IEDB	 tool	
was	used	 to	find	MHC-I	alleles	 that	can	bind	 to	
a	viral	peptide	 18.	Additionally,	 the	 IEDB	server	
predicted	HTL	epitopes	and	alleles	 for	 the	 three	
selected	 proteins19,20.	 Later,	ABCpred	 predicted	
linear	B	 lymphocyte	 (LBL)	 epitopes	 21,22. The 
MHC	allele-containing	 epitopes	were	 tested	 for	
immunogenicity,	 antigenicity,	 allergenicity,	 and	
toxicity	 utilising	 platforms	 (http://tools.iedb.
org/immunogenicity/),	VaxiJen	 2.0,	AlgPred	
2.0,	 and	ToxinPred	2,	mostly	 for	CTL	epitopes.	
Similar	 study	 was	 performed	 for	 the	 HTL	
epitopes.	IFNepitope	23,	IL4pred	24,	and	IL10pred	
25	were	 utilised	 to	 predict	 IFN,	 IL4,	 and	 IL10	
cytokines	with	 threshold	 values	 of	 0.2,	 0.2,	 and	
0.3,	 respectively.	 Immunogenicity,	 antigenicity,	
allergenicity,	and	toxicity	were	anticipated	using	
web-based	servers	VaxiJen	2.0,	AlgPred	2.0,	and	
ToxinPred	2.0	to	screen	LBL	epitopes.
Vaccine Construct Formulation
	 The	design	of	 the	vaccine	 involved	 the	
incorporation	 of	 specific	 epitopes,	 including	
HTL,	 CTL,	 and	 LBL,	 derived	 from	 precisely	
selected	MARV	proteins.	The	TLR	agonist	 (50s	
ribosomal	protein	L7/L12)	referenced	as	NCBI	-	
P9WHE3	was	employed	as	an	adjuvant26.	The	L7/

L12	 (P9WHE3)	was	 combined	 to	 the	 vaccine’s	
front	 using	 the	 bi-functional	 linker,	 EAAAK.	
Conversely,	 the	 chosen	 LBL,	 CTL,	 and	HTL	
were	 integrated	 using	Lys-Lys	 (KK),	Ala-Ala-
Tyr	 (AAY),	and	Gly-Pro-Gly-Pro-Gly	 (GPGPG)	
linkers,	respectively27.	The	AAY	linker	amplifies	
the immunogenic response of the multi-epitope 
vaccination28.	Livingston	 and	 colleagues	 (2002)	
conceived	the	GPGPG	linker	aiming	to	function	
as	a	flexible	gap.	The	efficacy	of	GPGPG	linker	in	
triggering	TH	lymphocyte	(HTL)	reactions,	crucial	
for	designing	a	multi-epitope	vaccine	29,30. 
Machine learning Guided Mutation
	 The	 vaccine	 construct/VLP	 sequence	
was	taken	and	linkers	from	it	were	extracted	out.	
Mutations	were	made	at	specific	residues	to	serve	
as linkers to strengthen the interaction of VLP. Each 
variant	was	then	examined	for	its	affinity	and	the	
mutation	was	carried	out	by	isolating	all	the	linker	
residues.	The	linkers	underwent	mutation	using	a	
Python	script.	Linkers:	EAAAK,	AAY,	GPGPG,	
KK.	Variants	created	for	each	linker	-	Linker_1	–	
EAAAK	generated	3200000	variants,	Linker_2	–	
AAY	generated	8000	variants,	Linker_3	–	GPGPG	
generated	 3200000	 variants,	 Linker_4	 –	 KK	
generated	400	variants.	Once	the	variants	stretch	
were	generated,	they	were	screened	based	on	their	
affinity	using	 the	 trained	ML	model.	A	machine	
learning	model	 using	DeepPurpose	 framework31 
was	 developed	 and	 trained	 to	 screen	 out	 the	
best	 vaccine	 construct/VLP	 sequence	 among	 all	
the	 generated	 sequences	 (Figure	 3).	The	model	
architecture	involves	a	dimension	of	hidden	layers:	
64,	32,	train	epochs:	150,	learning	rate:	0.001	and	
batch	size:	16.	This	predictive	model	was	trained	
on	a	dataset	obtained	from	Skempi	v2.032,	which	
contained	 344	 datapoints.	The	 training	 dataset	
included	protein	 and	peptide	 sequences	 and	 the	
affinity	between	 them.	This	 dataset	was	divided	
into	training,	validation	and	test	dataset	with	70%	
of	 the	 data	 for	 training,	 10%	 for	 validation	 and	
20%	for	testing.	The	sequences	were	encoded	using	
several	 encoders	where	Conjoint	 triad	 encoder	
provided	 by	DeepPurpose	 outperformed.	The	
affinity	value	was	normalized	before	proceeding	
with	 the	model	 training.	The	 normalization	 of	
the	affinity	was	achieved	by	calculating	negative	
logarithmic	 values	 for	 each	 and	 dividing	 the	
resultant	with	 corresponding	 peptide	 sequence	
length.	 The	 encoded	 sequences	 along	 with	
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normalized	affinity	scores	were	fed	to	the	model	for	
training	and	coefficient	of	determination	(R2) was 
calculated	to	evaluate	the	accuracy	of	the	model.	
The	multiple	 generated	 variant	 sequences	were	
encoded	and	 fed	 to	 the	 trained	model	 to	predict	
the best variant linker sequence among them. A list 
of	best	predicted	linkers	in	each	case	was	formed	
and	based	on	this	list	multiple	variants	of	vaccine	
construct	was	generated.	The	generated	variants	
also	included	wild	forms	of	the	linkers	to	include	
combination	 effect	 of	 linkers	 in	 the	 study.	The	
variants	were	 fed	 to	 the	 trained	model	 and	best	
predicted	variant	was	selected	for	further	analysis.	
Figure	2	explained	 the	pipeline	for	selecting	 the	
variant	vaccine	construct/VLP	through	ML.	
antigenicity, and allergenicity evaluation 
	 The	 constructed	 vaccine/VLP	 for	 both	
wild	and	variant	was	put	through	multiple	analyses	
as	 depicted	 in	 Figure	 2.	 It	 started	with	 amino	
acid	 composition	 analysis	 of	 the	 constructed	
vaccine	sequence.	Furthermore,	several	platforms	
were	used	to	predict	the	antigenic	and	allergenic	
properties	 of	 the	 vaccine	 design,	 this	 includes	
Vaxijen	v2.0,	Scratch	protein	prediction	platform,	
AllerTOP	v.	2.0,	and	AllergenFP	v.1.0.	
3d structure Modeling and Validation 
 The protein tertiary (3D) structure of 
wild	and	variant	VLP	was	predicted	using	Alpha	
Fold33.	The	predicted	models	underwent	validation	
through	 the	 ProCheck	 online	 platform34.  The 
modelled	structure	was	evaluated	using	ProCheck	
to	assess	the	quality	of	the	structure	based	on	the	
fraction	of	residues	in	most	favourable	region	of	
the	Ramachandran	plot.
Molecular dynamic simulation of Vaccine 
Construct
	 Based	on	the	ProCheck	results	the	wild	
and	 variant	VLP	was	 used	 for	MD	 simulation	
study.	The	GROMACS	2021.2	software	package	
was	 used	 to	 perform	 molecular	 dynamics	
simulations on both the VLPs. The simulation 
software	 uses	 the	CHARMM36	 force	 field	 for	
the parametrization35,36.	The	protein	was	solvated	
within	 a	 cubic	 simulation	 box	with	 recurring	
boundary	parameters	 using	 the	TIP3P	hydration	
model37,	maintaining	a	solvent	density	at	0.997	g/L.	
The	complete	system	was	solvated	at	a	pH	of	7.4,	
after	incorporating	sodium	(Na)	and	chloride	(Cl)	
ions	and	setting	the	temperature	at	310	K.	Using	the	
steepest	descent	technique,	the	complex’s	energy	

was	optimized	over	50,000	cycles.	The	extended	
electrostatic	interactions	were	conducted	using	the	
particle	mesh	Ewald	technique38. The simulation 
was	performed	over	a	duration	of	300	ns	using	a	
V-scale	 thermostat	 and	 under	 constant	 pressure	
conditions	 using	 Parrinello-Rahman	 pressure	
coupling	method.	The	 simulated	 trajectory	was	
captured	at	consistent	spans	of	10	ps	of	time	frame	
to	calculate	various	parameters	including	the	root	
mean	square	deviations	(RMSD),	root	mean	square	
variations	(RMSF),	the	surface	area	accessible	to	
solvents	(SASA)	and	principal	component	analysis	
(PCA).	The	post	MD	analysis	was	performed	on	
the	visual	platform	called	“Analogue”	developed	
by	Growdea	Technologies39,40 (https://growdeatech.
com/Analogue/).	Binding	 energy	was	 calculated	
by	 utilizing	 the	GROMACS	 plugin	 known	 as	
gmx_MMPBSA41.	The	MM/GBSA	 (Molecular	
Mechanics/Generalized	 Born	 Surface	Area)	
approach	was	 used	 for	 the	 determination	of	 the	
binding	free	energy	of	the	complex	over	the	last	
20	nanoseconds	of	the	simulation.
Molecular docking of Vaccine Construct
	 Structural	 coordinate	 for	 the	 TLR4	
complexes	was	 collected	 from	 the	Protein	Data	
Bank,	 with	 PDB	 ID:	 4G8A.	 The	 extraneous	
heteroatoms	 and	 chains	B,	C,	 and	D	were	 then	
removed	 using	 the	 Pymol	 software42.	 Later,	
Swiss	 PDB	 viewer	 tool	 was	 used	 to	 fix	 the	
missing	 residues	 43.	 	Both	mutated	 and	 original	
vaccine	 constructs	 (VLPs)	were	 docked	with	
TLR4	 (PDB	 ID:	 4G8A)	 using	 ClusPro	 tool	
44.	 This	 application	 is	 a	web-based	 automated	
protein”protein	or	peptide”peptide	docking	system.	
The	 docking	 programme	 assesses	 the	 potential	
surface	complementarities	of	putative	complexes.	
As	a	result	of	the	clustering	properties,	a	concise	
inventory	of	putative	complexes	 is	generated	by	
the programme.
Md simulation of docked Complex
	 Furthermore,	the	docked	complex	of	the	
best	performing	VLP	with	TLR4	was	used	for	MD	
simulation	of	500	ns	to	evaluate	the	stability	and	
binding	 ability.	 	MD	 simulation	was	 performed	
with	the	same	method	as	mentioned	in	the	section	
2.7.	Additionally,	 the	 binding	 free	 energy	 and	
the	energy	contribution	of	the	residues	were	also	
calculated	using	the	same	protocol	(MM/GBSA)	
as	mentioned	in	the	section	2.7.	
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Molecular dynamics Vaccine-tlr4 Complex
	 Simulation	of	Vaccine-TLR4	complex	was	
performed	using	the	same	protocol	as	discussed	in	
the	section	2.7.	However,	here	the	simulation	time	
for	the	production	run	was	set	as	500	ns.	

results 

Primary analysis 
	 A	comprehensive	search	was	performed	
on	BV	BRC	 database	 that	 resulted	 in	 total	 of	
266 assays for the epitopes. Among the various 

Fig. 1. Immunogenicity	Screening	and	Epitope	Prediction	Process	for	Vaccine	Development:	This	flowchart	
details	the	stages	involved	in	selecting	viral	proteins	for	vaccine	formulation,	starting	with	sequence	retrieval	and	
initial	screening	for	antigenicity	and	allergenicity.	Screened	proteins	are	then	analyzed	for	epitope	prediction,	
identifying	helper	T-lymphocyte	(HTL),	cytotoxic	T-lymphocyte	(CTL),	and	linear	B-cell	lymphocyte	(LBL)	

epitopes.	Further	screening	evaluates	immunogenicity,	antigenicity,	allergenicity,	and	toxicity,	leading	to	the	final	
vaccine	construct,	with	the	integration	of	suitable	adjuvants	and	linkers.
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Fig. 2. Workflow	for	Vaccine	Design:	This	flowchart	outlines	the	step-by-step	process	in	vaccine	development,	
starting	 from	 the	 initial	 vaccine	 construct	 analysis,	 including	 assessments	 of	molecular	weight,	 pI,	 (Isoelectric	
point),	antigenicity	and	allergenicity.	It	proceeds	through	secondary	structure	prediction	and	structure	validation,	
which	includes	molecular	docking	with	Toll-like	Receptors	(TLRs)	and	binding	energy	analysis.	Parallel	to	this	is	
the	generation	and	prediction	of	VLP	variants	using	a	machine	learning	model,	which	feeds	into	the	selection	of	
the best linker for the VLP constructs.

experimental	 assays	 conducted	 for	 determining	
these	epitopes,	a	total	of	57	assays	demonstrated	
positive	outcomes.	The	positive	indications	were	
subsequently	classified	into	four	distinct	groups,	
distinguished	 by	 the	 precise	 viral	 components	
that	 they	 selectively	 targeted.	The	 distribution	
of	 positive	 assays	 is:	 (a)	 viral	 envelope	 protein	
showed	positive	outcomes	in	a	total	of	22	assays,	
(b)	viral	nucleoprotein	showed	positive	outcomes	
in	11	of	the	assays,	(c)	viral	matrix	protein	showed	a	
positive	result	in	a	1	assay,	and	(d)	viral	polymerase	
showed	positive	indications	in	23	cases.	This	study	
showed	 that	 envelope	 protein	 and	 polymerase	
had	maximum	number	of	assays	 for	 the	epitope	

determination.	 Polymerase	 is	 a	 heavy	 protein	
and	most	 likely	 to	find	epitopes	on	 it.	However,	
envelope	protein	has	significantly	smaller	sequence	
and	the	protein	is	on	the	surface	of	the	virus	and	
thus	should	be	considered	as	most	potential	protein	
for	vaccine	design.	
Protein retrieval and analysis
 The MARV contains seven structural 
proteins:	 (1)	 nucleoprotein,	 (2)	 envelope	
glycoprotein,	 (3)	 matrix	 protein	 (VP40),	 (4)	
polymerase	co-factor	(VP-35),	(5)	RNA	directed	
RNA	polymerase	L,	 (6)	 transcriptional	 activator	
(VP30),	 and	 (7)	membrane	 associated	 protein	
(VP24).	Later,	the	UniProt	database	was	used	to	
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table 1.	Selected	structural	proteins	from	Marburg	virus	and	their	vaccine	related	parameters	including	
antigenicity,	allergenicity	and	Number	of	Tm	helices

Uniprot	ID	 Antigenicity	 Allergenicity	 Number	of	Tm	helices	

P27588	 0.4761	Probable	Antigen	 Probable	Non-Allergen	 0
P35253	 0.5481	Probable	Antigen	 Probable	Non-Allergen	 1
P35260	 0.4107	Probable	Antigen	 Probable	Non-Allergen	 0
P35259	 0.4360	Probable	Antigen	 Probable	Non-Allergen	 0
P31352	 0.4518	Probable	Antigen	 Probable	Non-Allergen	 0
P35258	 0.5636	Probable	Antigen	 Probable	Non-Allergen	 0
P35256	 0.5423	Probable	Antigen	 Probable	Non-Allergen	 0

Fig. 3. Neural	Network	Encoding	of	Amino	Acid	Sequences	using	DeepPurpose	framework:	This	diagram	
represents	a	machine	learning	model	where	sequences	of	amino	acids	are	input	into	an	encoder.	The	encoder’s	
role	is	to	convert	the	raw	sequence	data	into	a	format	suitable	for	the	neural	network	to	process.	Subsequently,	
these	transformed	features	are	passed	through	various	layers	of	the	network	(depicted	as	pink	for	input	and	

yellow	for	hidden	layers)	to	eventually	arrive	at	an	output	(shown	in	blue).	This	model	was	used	in	this	study	to	
predict	the	affinity	of	the	sequences.	

retrieve their respective protein sequences as shown 
in supplementary Table S1. 
antigenicity and allergenicity 
	 IFN-gamma	 prediction	 accuracy	was	
81.39%,	while	 IL4pred	 and	 IL10pred	 exhibited	
75.76%	and	81.24%	accuracy,	respectively.	Only	
one	peptide	matched	all	selection	criteria	against	
the	 first	 protein.	However,	 no	 peptide	met	 the	
selection criteria for the other two proteins.
	 A	 comprehensive	 examination	 was	
carried	out	on	a	group	of	seven	distinct	proteins	to	
understand	 their	vaccine	 related	properties.	This	
analysis	showed	that	these	proteins	possess	a	high	
probability	of	being	recognized	as	antigens	while	
concurrently	exhibiting	low	chances	for	allergenic	
reactions.	Notably,	among	these,	only	a	one	protein	
showed	 the	 presence	 of	 transmembrane	 helical	

activity,	a	feature	that	differentiated	it	from	other	
proteins.	The	detailed	attributes	of	these	proteins	
are	 systematically	 catalogued	 in	Table	 1,	 that	
demonstrate	 their	 potential	 to	 be	 considered	 as	
potential	protein	to	extract	vaccine	construct.
 The objective of this investigation 
was	 to	 further	 narrowed	 down	 based	 on	 the	
antigenic	properties	of	the	proteins.	Three	proteins,	
UniProt	 IDs:	 P35253	 (Envelope	 glycoprotein),	
P35258	 (Transcriptional	 activator	VP30),	 and	
P35256	 (Membrane-associated	 protein	VP24)	
were	 identified	 as	 prime	 candidates	 for	 further	
examination	 based	 on	 their	 antigenicity	 score	
(shown	in	Table	1).	The	selection	criterion	pivoted	
mainly	on	their	marked	antigenicity,	which	signifies	
their potential role in triggering an immune 
response.	This	aspect	 is	critical,	as	 the	antigenic	
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table 3. Correlation	of	determinants	
(R2)	for	the	training	model	of	using	the	
different	encoders.	These	encoders	of	the	
DeepPurpose	framework	was	used	for	
encoding	the	sequences	for	using	in	the	

ML-model

Encoder	 R-squared

AAC	 0.415
PseudoAAC	 0.825
Conjoint_triad	 0.966
Quasi-seq	 0.885
ESPF	 0.680
CNN	 0.919
CNN_RNN	 0.940
Transformer	 0.925

table 4. Final	Wild-Type	and	Variant	Virus-Like	Particle	(VLP)	Construct	Sequences.	The	black	font	of	the	
sequence	represents	the	adjuvant,	yellow	represents	the	HTL	epitopes,	blue	represents	the	CTL	and	LBL	epitopes	

and	underline	amino	acids	represents	the	linkers

nature	of	a	protein	determines	its	interaction	with	
the	host’s	 immune	system,	and	consequently,	 its	
role in various biological processes or therapeutic 
applications.	Moreover,	 all	 the	 proteins	were	
predicted	as	non-allergen,	this	provides	the	safety	
aspect	 of	 these	 protein	 to	 be	 used	 as	 vaccine.	
The	 significance	 of	 these	 findings	 highlights	
the potential applications of these protein in the 
immunology	 for	 vaccine	 design.	The	 antigenic	
properties	 of	 these	 proteins	 could	 pave	 the	way	
for	novel	approaches	 in	vaccine	development	or	
in	the	design	of	targeted	therapies.	Understanding	
the	 allergenicity	 is	 equally	 crucial,	 as	 it	 ensures	

the	 safety	 and	 efficacy	 of	 any	 derived	 vaccine	
candidate.	The	 identification	 of	 transmembrane	
helices in one of the proteins opens up avenues for 
exploring	 its	 role	 in	 cellular	 processes,	 possibly	
providing	insights	into	the	mechanisms	of	cellular	
transport	or	signal	transduction.
Prediction of Ctl, htl, lBl epitopes
	 A	 significant	 focus	 was	 placed	 on	
the	 prediction	 of	 Cytotoxic	 T	 Lymphocyte	
(CTL),	Helper	T	Lymphocyte	(HTL)	and	Linear	
B-Lymphocyte	 (LBL)	 epitopes	 derived	 from	
the	 identified	proteins	 of	MARV.	This	 phase	 of	
the	 study	was	 instrumental	 in	 predicting	 a	 total	
of	 314	 potential	CTL	 epitopes.	These	 epitopes	
represent	specific	sequences	within	the	complete	
protein that are capable of triggering an immune 
response,	 specifically	 the	 activation	 of	 CTLs,	
which	play	 a	 crucial	 role	 in	 the	 body’s	 defence	
mechanism	 against	 pathogens.	 Followed	 by	 the	
identification	of	 these	 potential	CTL	epitopes,	 a	
rigorous	 evaluation	 process	was	 initiated.	This	
involved	 an	 in-depth	 assessment	 of	 various	
characteristics	 of	 the	 epitopes,	 including	 their	
immunogenic	 properties,	 antigenic	 features,	 and	
potential	 allergenic	 reactions.	Additionally,	 the	
toxicity	of	these	epitopes	was	also	predicted.	The	
criteria	for	selection	of	epitopes	were	based	on	the	
result of these assessments.
Cytotoxic t lymphocyte (Ctl)
	 The	analysis	yielded	noteworthy	results	
for	 the	 protein	 sequence	 P35253.	 Out	 of	 the	
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table 5. Comparative	biophysical	property	analysis	of	wild-type	and	variant	VLP	Constructs.	The	
biophysical	properties,	include	amino	acid	count,	molecular	weight,	theoretical	isoelectric	point	

(pI),	charge	distribution,	instability	index,	and	average	hydropathicity	(GRAVY).	

Characteristics	 Wild	VLP	 Variant	VLP

Number	of	amino	acids	 352	 352	
Molecular	weight	 38307.04	Da	 38422.43	Da	
Theoretical	pI	 6.58	 8.73	
Total	number	of	negatively	charged	residues	(Asp	+	Glu)	 42	 42	
Total	number	of	positively	charged	residues	(Arg	+	Lys):	 40	 45	
The	instability	index	(II)	 38.01	 38.12	
Grand	average	of	hydropathicity	(GRAVY)	 -0.101	 -0.137	

Fig. 4. Mutation	of	VLPs	using	ML	model:	This	illustration	represents	the	process	of	mutation	of	the	linkers	used	
by	the	adjuvants,	CTL,	HTL	and	LBL	epitopes	using	the	Python	script.	The	‘Conjoint	triad’	of	the	DeepPurpose	
framework	was	further	used	for	screening	sequences	based	on	affinity.	The	VLP	variants	were	generated	and	

using	the	conjoint	triad	screened	for	the	best	affinity.	

assessed	epitopes,	10	epitope	peptides	were	found	
to	 adhere	 strictly	 to	 the	 established	 selection	
criteria	for	CTL.	These	peptides	showed	promise	
in	 context	 to	 their	 immunogenic	 potential,	
indicating	their	capability	to	effectively	stimulate	
an	 immune	response.	Out	of	 this	subset,	 the	 top	
two	peptides	were	chosen	based	on	their	superior	
immunogenicity.	This	 selection	 underscores	 the	
potential	 of	 these	 peptides	 in	 eliciting	 a	 robust	

immune	 response,	which	 is	 a	 key	 consideration	
in	vaccine	development	and	immunotherapy.	 	In	
the	 case	 of	 protein	 sequence	P35258,	 a	 similar	
pattern	was	 observed.	 Seven	 peptides	 from	 this	
sequence	followed	the	stringent	selection	criteria.	
As	with	P35253,	the	top	two	peptides	were	selected	
in	 this	case,	primarily	based	on	their	heightened	
immunogenic	 properties.	This	 choice	 reflects	 a	
focused	approach	towards	identifying	epitopes	with	
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Fig. 5. 3D	structural	comparison	of	vaccine	construct	predicted	by	AlphaFold	for	(a)	Wild	VLP	and	(b)	Variant	
VLP.	This	illustration	presents	the	three-dimensional	structures	of	wild-type	and	variant	VLPs,	highlighting	
differences	in	secondary	structures	such	as	alpha-helices	and	beta-sheets	with	the	adjuvants,	CTL,	HTL,	LBL	

epitopes	and	linkers	highlighted	in	the	structures.	

optimal immune response triggering capabilities. 
Similarly,	 for	 the	 protein	 sequence	P35256,	 the	
analysis	 showed	 four	 peptides	 that	 satisfied	 the	
selection	 criteria.	 Following	 the	 established	
protocol,	the	top	two	peptides	were	selected,	with	
their	 selection	 being	 primarily	 driven	 by	 their	
immunogenicity. This selection process was critical 
in	narrowing	down	 the	 candidates	 to	 those	with	
the highest potential for practical application in 
immunological	study.	Table	2	shows	the	selected	
epitope	peptide	from	the	three	proteins	with	their	
vaccine	related	properties.	
helper t lymphocyte (htl)
	 Once	 the	 potential	HTL	 epitopes	were	
identified,	 a	 comprehensive	 assessment	 was	
conducted.	 This	 evaluation	was	multifaceted,	
examining	 the	 immunogenicity,	 antigenicity,	
allergenic	potential,	and	toxicity	of	the	epitopes.	
The criteria for this assessment were meticulously 
defined	in	Table	2,	providing	a	structured	properties	
for	evaluating	the	epitopes.	The	assessment	showed	
that	for	P35253	protein,	it	was	found	that	only	one	
epitope	peptide	satisfied	all	the	predefined	criteria	
of	vaccine	candidate.	This	peptide	stood	out	due	
to	its	ability	to	follow	the	stringent	requirements,	

marking	 it	 as	a	promising	candidate	 for	vaccine	
construct.	 Remarkably,	 none	 of	 the	 epitope	
peptides	 from	 the	P35258	protein	 sequence	met	
the	 established	 criteria,	 indicating	 a	 divergence	
in their potential as effective HTL epitopes. 
This	 result	 underscores	 the	 complex	 nature	 of	
protein-epitope	interactions	and	the	variability	in	
immunogenic	 potential	 across	 different	 protein	
sequences.	 Regarding	 the	 protein	 sequence	 of	
P35256,	 the	 findings	were	mixed.	While	 one	
peptide	corresponding	to	this	protein	satisfied	most	
of	the	specified	requirements,	it	fell	short	in	one	
crucial	aspect	 i.e.	 its	ability	 to	 induce	Interferon	
(IFN).	This	negative	performance	in	IFN	induction	
is	 significant,	 as	 IFN	 plays	 a	 vital	 role	 in	 the	
immune	response,	particularly	in	antiviral	defence	
mechanisms.
linear B-lymphocyte (lBl)
	 Subsequently,	 the	 peptides	 underwent	
a	 LBL	 screening	 process	 for	 the	 specified	
proteins,	focusing	on	criteria	of	immunogenicity,	
antigenicity,	allergenicity,	and	toxicity.	The	results	
of	this	screening	are	detailed	in	Table	2,	which	was	
utilized	for	the	development	of	the	vaccine.	As	a	
result,	in	the	case	of	protein	P35253,	13	peptides	are	
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Fig. 6. Comparative	post	molecular	dynamics	analysis	of	wild-type	and	variant	VLP:	This	set	of	graphs	presents	
a	detailed	300	ns	molecular	dynamics	simulation,	comparing	wild-type	and	variant	protein	forms.	The	analysis	
includes	root-mean-square	deviation	(RMSD)	over	time	(a),	root-mean-square	fluctuation	(RMSF)	per	residue	
(b),	the	solvent	accessible	surface	area	(SASA)	over	time	(c),	and	a	principal	component	analysis	(PCA)	scatter	

plot	(d)	to	show	the	conformational	space	explored	by	both	proteins.

identified	that	adhere	to	the	established	selection	
criteria,	and	subsequently,	the	top	2	peptides	are	
chosen	 based	 on	 their	 immunogenicity	 profile.	
Similarly,	for	protein	P35258,	4	peptides	meet	the	
selection	criteria,	and	the	top	2	peptides	are	selected	
based	 on	 their	 immunogenicity	 characteristics.	
Likewise,	 in	 the	 context	 of	 protein	 P35256,	 3	
peptides	are	found	to	satisfy	the	selection	criteria,	
and	the	top	2	peptides	are	selected	on	the	basis	of	
their immunogenicity attributes.
human homology Comparison and MhC 
Cluster analysis
	 Identified	 epitopes	 (shown	 in	Table	 2)	
were	sequentially	compared	against	the	complete	
human	proteome	to	find	the	similar	segments	of	
sequence.	The	CTL,	HTL,	and	LBL	epitopes	that	
had	 been	 screened	 had	 exhibited	 no	 homology	
with	the	human	proteome,	thereby	validating	their	
role	as	antigens	or	exogenous	entities	for	humans.		
Using	 the	 IEDB	 platform,	 the	MHC-I	 alleles	

that	 had	 interactions	with	 the	 epitope	 derived	
from	the	chosen	structural	protein	were	grouped	
together.	Here,	25	alleles	 from	each	group	were	
incorporated.	
designing of Vaccine construct and evaluation 
	 The	 construction	 and	 assessment	 of	
the	 vaccine	 involved	 a	 strategic	 assembly	 for	
combination	of	epitopes	targeting	CTL,	HTL,	and	
LBL.	These	were	linked	using	linkers,	“EAAAK”	
sequence	was	used	to	connect	the	adjuvant	with	the	
CTL	epitopes.	Adjuvants	were	added	to	the	epitope	
sequence to improve the immune response. It also 
assists	the	vaccine	candidate	to	create	long	lasting	
immune	 response.	Moreover,	 two	CTL	epitopes	
were	 connected	 using	 “AAY”	 sequence	 linker.	
Similarly,	“GPGPG”	was	used	to	connect	two	HTL	
epitopes,	and	“KK”	for	LBL	epitope	connectivity.	
The	final	vaccine	construct	is	shown	in	the	Table	
4.	The	adjuvant	used	in	the	vaccine	was	identified	
as	the	TLR	agonist,	specifically	the	50S	ribosomal	
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Fig. 7. Free	energy	landscape	for	the	(a)	Wild	VLP	(b)	Variant	VLP:	These	contour	maps	represent	the	free	
energy	landscapes	of	a	molecular	system	as	a	function	of	the	first	two	principal	components	(PC1	and	PC2).	The	
color	gradients	indicate	regions	of	varying	free	energy,	with	red	areas	representing	higher	energy	states	and	blue	
areas	indicating	lower	energy	states,	which	are	often	associated	with	more	stable	conformations	in	the	context	of	

molecular	dynamics	simulations.

Fig. 8. Comparative	radar	chart	of	binding	free	energy	for	wild	and	variant	VLP:	This	dual	radar	chart	illustrates	
the	binding	free	energy	values	across	a	series	of	molecular	models	(a)	and	(b).	Each	spoke	on	the	radar	represents	

a	different	model,	with	numerical	values	indicating	the	magnitude	of	binding	free	energy,	a	critical	factor	in	
assessing	the	stability	and	affinity	of	molecular	interactions.	

protein	L7/L12,	 catalogued	 under	 the	NCBI	 ID	
P9WHE3. 
Machine learning Based Mutation 
 The construction of a variant sequence 
was	 initiated	 by	 extracting	 linker	 sequences,	
followed	by	their	subsequent	mutation	through	a	
Python	script.	The	linkers	investigated	in	this	study	
were	EAAAK,	AAY,	GPGPG,	and	KK,	resulting	in	
mutations	of	3,200,000	for	EAAAK	and	GPGPG,	

8,000	for	AAY,	and	400	for	KK,	 respectively.	A	
machine	 learning	model	was	 developed	 using	
the DeepPurpose framework to systematically 
assess	 and	determine	 the	most	 effective	vaccine	
construct	from	the	extensive	collection	of	produced	
mutations.	Multiple	encoders	were	used	for	model	
training	and	r-squared	for	each	case	was	noted	as	
shown	in	Table	3.	Based	on	R2,	Conjoint	triad	was	
used	as	encoder	for	affinity	prediction.	
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Fig. 9. Post	MD	analysis	of	docked	variant	VLP-TLR	complex	over	the	500	ns	MD	simulation:	(a)	RMSD	curve	
for	variant	VLP-TLR	complex	calculated	during	the	500	ns	MD	simulation.	(b)	Bar	plot	representing	binding	
free	energy	(ÄG)	of	the	variant	VLP-TLR	complex.	(c)	Energy	Contribution	for	residues	of	variant	VLP-TLR	

complex.	

	 Sequences	 encoded	 using	 the	Conjoint	
triad	encoder,	a	feature	of	the	DeepPurpose	toolkit,	
were	used	for	model	training.	Before	model	training,	
affinity	values	were	normalised	by	 transforming	
them into their negative logarithmic equivalents 
and	then	normalising	these	values	according	to	the	
length of their respective sequences. This technique 
enabled	the	model’s	training	phase,	during	which	
the	encoded	sequences	and	their	normalised	affinity	
scores	were	used	as	input.		
	 Upon	training	completion,	the	model	was	
tasked	with	evaluating	the	generated	sequences	to	
pinpoint the most promising linker variant. The top 
10	variants	for	EAAAK	were,	IITTE,	MMNMQ,	
FFHFH,	GVYKG,	RQLQQ,	AAQRA,	WVNNN,	
DMDDE,	 SCSCC	 and	 EPPLP,	 similarly,	 for	
GPGPG	the	top	10	variants	were,	SFSSM,	TRTYT,	
DLWDD,	MRAAA,	GGNEG,	HHHII,	MEREE,	
CCQMQ,	VVKKV	 and	YPPLP.	The	 predicted	

affinity	ranged	from	0.77	to	1.79	for	EAAAK	while	
it	ranged	from	0.66	to	1.98	for	GPGPG.	The	AAY	
linker	had	top	32	variants	showed	same	predicted	
score	of	0.852	and	 thus,	 these	all	were	selected.	
Unlike,	the	three	mentioned	linkers,	KK	being	only	
two	 residues	 long	 showed	 same	predicted	 score	
for	 all	 the	 400	variants	 and	 thus,	 the	wild	 form	
itself	was	used	for	further	study.	The	selection	of	
notable	mutants	 for	 each	 linker	was	 conducted,	
and	 these	 variants	were	 combined	 into	 diverse	
variant	VLP	configurations.	These	configurations	
were	 further	 enhanced	 by	 integrating	wild-type	
linkers	to	guarantee	their	inclusion	in	the	study	with	
entire	sequences,	hence	eliminating	any	potential	
bias.	A	total	of	3,993	variant	VLPs	were	produced	
for	the	purpose	of	predicting	affinity.	The	trained	
model	was	 subsequently	 provided	with	 these	
VLP	variations	 to	 predict	 the	optimal	 sequence,	
which	was	then	utilised	for	further	research.	The	



1477SuyaSh et al., Biosci., Biotech. Res. Asia,  Vol. 21(4), 1463-1484 (2024)

optimal	vaccine	design	had	an	affinity	of	0.021,	
as	anticipated	by	the	machine	learning	model.	The	
best	predicted	variant	VLP	sequence	is	shown	in	
Table	4.	Illustration	in	the	Figure	4	explained	the	
screening	of	the	best	variant	VLP	using	ML-based	
model.	This	approach	underscores	the	integration	
of computational biology with machine learning 
to	 streamline	 the	 identification	 and	optimization	
of	VLPs,	potentially	expediting	the	development	
of effective immunogens.
VlP Properties evaluation
	 The	 properties	 of	 the	wild	 and	 variant	
VLP	were	analysed	and	listed	in	the	Table	5.	This	
wild	VLP	and	variant	VLP	 is	 composed	of	 352	
amino	acids,	culminating	in	a	molecular	mass	of	
38,307.04	Da	 and	38422.43	Da,	 respectively.	 It	
has	an	isoelectric	point	(pI)	of	6.58	and	8.73	for	
wild	and	variant	VLP.	Its	molecular	architecture	
comprises	42	negatively	charged	residues	including	
Aspartic	acid	(Asp)	and	Glutamic	acid	(Glu),	and	
40	positively	 charged	 residues	 such	 as	Arginine	
(Arg)	and	Lysine	(Lys).	The	wild	VLP	and	variant	
VLP	has	an	instability	index	is	measured	at	38.01	
and	38.12,	 respectively.	Additionally,	 the	Grand	
Average	of	Hydropathicity	(GRAVY)	index,	noted	
as	-0.10	and	-0.137,	as	listed	in	Table	5,	indicates	
the	hydrophilic	nature	of	 the	protein,	suggesting	
its structural stability. 
	 The	 antigenic	 behaviour	 and	 potential	
allergenic	 reactions	 were	 predicted	 for	 both	
wild	and	variant	VLP.	Here,	findings	indicated	a	
notable	antigenicity	score	of	0.740,	which	strongly	
suggests	 the	 vaccine’s	 capability	 to	 trigger	 an	
immune	response.	While	variant	VLP	showed	an	
antigenicity	score	of	0.6730	which	was	comparable.	
Both	wild	and	variant	VLP	showed	probability	of	
being non-allergen. This comprehensive analysis 
is	instrumental	in	advancing	the	understanding	of	
the	VLP	characteristics	and	ensuring	its	efficacy	
and	safety.	The	antigenicity	score	 is	particularly	
encouraging,	 as	 it	 points	 towards	 the	VLP’s	
potential	 effectiveness	 in	 inducing	 an	 immune	
response.	 Similarly,	 the	 non-allergenic	 nature	
reassures	 its	 applicability	 across	 diverse	 groups	
without significant risk of allergic reactions. 
Collectively,	 these	findings	provide	 a	 promising	
outlook	for	the	vaccine’s	future	application	and	set	
a	foundation	for	subsequent	clinical	evaluations.

three-dimensional structure Modelling and 
Validation 
	 AlphaFold	 (Colab	 version)	 was	 used	
to	 generate	 the	 vaccine	 construct/VLPs	 3D	
structure as shown in Figure 5.  As shown in the 
Figure	 5,	 the	 two	 structures	were	 composed	 of	
the	adjuvant,	CTL,	HTL	and	LBL	epitopes	along	
with	the	linkers.	These	structures	were	selected	for	
structure	 validation	using	Procheck	 application.	
In	this	context,	 the	AlphaFold	structures	of	wild	
and	 variant	VLP	 exhibited	 96.2%	 and	 88.5%,	
respectively	of	amino	acid	residues	in	the	primary	
preferred	region	of	the	Ramachandran	plot.	Hence,	
the	both	these	structures	predicted	by	AlphaFold	
showed	 favourable	 confidence	 scores	 from	
Procheck.	These	structures	were	further	selected	
for	molecular	dynamics	simulation.	
Molecular dynamics simulation
	 The	wild	 and	 variant	VLP	 structures	
were	used	for	molecular	dynamics	simulation	for	
studying	 the	 stability	and	flexibility.	Root	Mean	
Square	Deviation	(RMSD)	is	frequently	utilised	to	
evaluate	the	stability	of	protein	structures	during	
molecular	dynamics	simulations.	The	measurement	
calculates	the	mean	distance	between	the	atoms,	
often	 the	 backbone	 atoms,	 of	 aligned	 proteins.	
Lower	RMSD	values	 generally	 indicate	 a	more	
stable protein structure.
rMsd and rMsF
	 The	RMSD	graph	depicted	in	Figure	6(a)	
shows	the	protein	structure’s	stability	throughout	
a	300	ns	timeframe.	RMSD	of	the	wild	fluctuated	
between the range 1.75 nm to 2 nm while variant 
was	in	the	ranged	1.5	nm	to	1.75	nm	for	most	of	
the	simulation.	Both	the	wild	type	(in	black)	and	
the	 variant	 (in	 red)	 exhibit	 an	 early	 increase	 in	
RMSD	during	 the	 simulation,	 indicating	 initial	
structural alterations. The variant reaches a lower 
RMSD	value	compared	to	the	wild	type,	indicating	
it may attain a more stable conformation faster or 
possess	a	less	flexible	structure	overall.	The	root	
mean	square	fluctuation	(RMSF)	graph	illustrates	
the	 variability	 of	 each	 residue	 throughout	 the	
simulation.	 Figure	 6(b)	 displayed	 the	RMSF	of	
wild-type	 and	 variant	VLP.	The	 variant	 shows	
reduced	fluctuations	 compared	 to	 the	wild	 type,	
indicating	that	 the	mutations	may	have	caused	a	
more	stable	structure,	perhaps	impacting	epitope	
presentation	dynamics.
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sasa and PCa
 The solvent-accessible surface area 
(SASA)	graph	quantifies	the	protein’s	surface	area	
that	can	be	reached	by	solvent	molecules.	In	the	
Figure	6(c),	both	the	wild	type	and	variant	show	
similar	trends,	with	the	variant	exhibiting	slightly	
higher	 SASA	values	 throughout	 the	 simulation,	
which	 could	 impact	 how	 the	 immune	 system	
recognizes	and	interacts	with	the	VLP.	Both	showed	
a SASA of 225 nm2 for most of the simulation. 
The	principal	component	analysis	 (PCA)	scatter	
plot	(Figure	6(d))	shows	the	dominant	patterns	of	
movement	 in	 the	protein	structures.	The	distinct	
clustering	of	 the	wild	 type	and	variant	 indicates	
significant	differences	in	their	dynamic	behaviors,	
which might have implications for their functional 
activities.	The	post	MD	simulation	 indicate	 that	
the	 variant	VLP	 possesses	 distinct	 structural	
and	 dynamic	 characteristics	 in	 comparison	 to	
the	 wild	 type.	 These	 differences	may	 play	 a	
critical	role	in	its	efficacy	as	a	vaccine	candidate,	
potentially	influencing	its	stability,	immune	system	
recognition,	and	interactions	with	molecules	like	
toll-like receptors.
Fel
	 Figure	7	shows	the	free	energy	landscapes	
(FEL)	for	a	wild	type	VLP	in	7(a)	and	a	variation	
VLP	in	7(b),	represented	on	two	main	components	
(PC1	and	PC2).	These	landscapes	are	commonly	
employed	to	represent	the	thermodynamic	stability	
and	 conformational	 states	 of	macromolecules,	
including	 proteins,	 in	 molecular	 dynamics	
simulations.	The	FEL	is	color-coded	based	on	free	
energy	values,	with	blue	representing	lower	free	
energy,	 suggesting	more	 stability	 and	 likelihood	
of	 the	 system	 existing	 in	 that	 state,	 and	 red	
representing	higher	free	energy,	indicating	poorer	
stability.	The	landscape’s	topography	indicates	the	
quantity	of	stable	states	(basins)	and	the	elevation	
of the barriers separating them.
	 Figure	 7(a)	 shows	 that	 the	wild	 type	
VLP’s	FEL	has	fewer	deep	blue	patches,	indicating	
a	 reduced	amount	of	very	 stable	 conformations.	
Figure	7(b)	displays	a	larger	region	of	deep	blue,	
suggesting	that	the	variation	VLP	exhibits	a	wider	
array	of	stable	conformations.	The	variant’s	FEL	
shows	 deeper	 and	more	 well-defined	 basins,	
indicating	 a	 rougher	 and	 thermodynamically	
favourable	 energy	 landscape	 that	may	 lead	 to	 a	
larger chance of stable conformations.

 The RMSD graph shows that the variant 
VLP	exhibits	increased	stability,	as	evidenced	by	its	
consistently	lower	and	more	stable	RMSD	values	
over	time	compared	to	the	wild	type.	The	red	line	
showing	 the	 change	VLP	 rapidly	 stabilises	 and	
retains	its	initial	conformation	with	minor	deviation	
during	 the	 simulation.	The	variant	VLP	appears	
to	be	structurally	more	stable	than	the	wild	type.	
The	 free	 energy	 landscapes	 support	 the	 stability	
of	the	variety	VLP,	complementing	the	data.	The	
variant	landscape	has	a	wider	range	of	low-energy	
conformations,	indicated	by	deeper	blue	areas,	in	
contrast	 to	 the	wild	 type.	This	 suggests	 a	more	
advantageous	and	steady	structural	state,	which	is	
crucial for the effectiveness of a virus-Like Particle 
(VLP)	in	vaccine	development.	The	computational	
investigations suggest that the variation VLP 
reaches	structural	stability	quickly	and	maintains	
a	 stable	 conformation	with	 favourable	 energy,	
highlighting	its	potential	as	a	promising	candidate	
for	vaccine	development.
Molecular docking
	 The	wild	 and	 variant	VLP	 structures	
after	MD	 simulation	 were	 analysed	 for	 their	
interaction	with	TLR4	using	molecular	docking.	
The	 Cluspro	 programme	 produced	 30	 unique	
clusters	with	elevated	interaction	energy	as	shown	
in supplementary Table S2. The initial cluster 
displayed	binding	scores	of	-1072.7	kcal/mol	for	
the	variant	VLP	and	-934.8	kcal/mol	for	the	wild	
VLP.	This	suggests	the	strong	binding	of	the	variant	
VLP	to	the	TLR4	receptor	compared	to	the	wild	
VLP.	This	receptor	binds	to	the	foreign	pathogen,	
indicating	its	interaction	with	the	vaccine	design,	
which	resembles	a	virus-like	particle.	This	binding	
would	 additionally	 stimulate	 the	 immunological	
response. 
	 Figure	8	showed	a	radar	chart	comparing	
the	binding	free	energy	of	30	docked	models	for	
a	wild	type	and	variant	virus-like	particle	(VLP).	
Figures	8(a)	and	8(b)	 indicate	 that	 the	 length	of	
each	spoke	represents	the	binding	free	energy	of	
each	model,	where	shorter	lengths	imply	stronger	
binding	affinity	due	to	lower	energy	values.	The	
green	 region	 in	 Figure	 8(a)	 representing	 the	
binding	free	energies	of	various	models	is	smaller	
than	in	Figure	8(b),	suggesting	higher	free	energy	
values	 and	 therefore	weaker	 binding	 affinities.	
The	 larger	 green	 region	 in	Figure	 8(b)	 suggests	
lower	binding	free	energy	values	for	most	models,	
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indicating	stronger	binding	affinities.	The	variant	
VLP	 showed	 decreased	 binding	 free	 energy	
values	 in	most	models,	 suggesting	 a	 possible	
stronger	binding	affinity	to	its	target.	These	results	
suggest that variant VLP is a more suitable choice 
for	 advancement,	 given	 the	 lower	 binding	 free	
energies.
Md simulation of Variant VlP- tlr4 Complex
rMsd
	 This	 section	 involved	 conducting	 a	
molecular	 dynamics	 simulation	 to	 gain	 an	
understanding	of	the	stability	of	the	TLR4-variant	
VLP	complex	and	to	assess	the	effectiveness	of	the	
developed	vaccine.	Root-Mean-Square	Deviation	
(RMSD)	 of	 both	 the	 variant	VLP	 and	TLR4	
receptor	was	calculated	over	the	500	ns	trajectory	
for	analysing	the	deviation	of	the	docked	complex.	
Here	 the	RMSD	was	 calculated	by	 aligning	 the	
other	 protein.	 Receptor	 is	 aligned	 and	RMSD	
for	VLP/vaccine	 construct	 calculated	 and	 vice	
versa.	Figure	9(a)	displays	the	RMSD	plot	of	the	
variant	VLP-TLR4	complex.	Though,	it	exhibited	
a	greater	RMSD,	 ranging	 from	2.14	nm	 to	2.21	
nm,	it	maintains	a	stable	appearance	for	most	part	
of the simulation frame. The RMSD plot of the 
vaccine-TLR4	complex	showed	consistent	stability	
over	the	simulation,	indicating	that	variations	did	
not	cause	significant	conformational	changes	and	
the	 complex	 remained	 stable	 throughout.	The	
mean	RMSD	 for	 the	 receptor	 and	 variant	VLP	
was	2.14	±	0.01	and	2.21	±	0.03	nm,	respectively.		
The	stable	connection	between	 the	VLP	and	 the	
receptor	 indicates	 the	 potential	 effectiveness	 of	
the	vaccine	design	 in	consistently	 triggering	 the	
targeted	immune	response.	
Binding Free energy
	 The	 binding	 free	 energy	 of	 vaccine	
construct-TLR	 complex	was	 assessed	 using	 the	
MM/GBSA	methodology.	 This	 analysis	 was	
conducted	based	on	 the	 trajectory	data	 obtained	
from	the	final	20	nanoseconds	of	the	simulation.	
The	complex	exhibited	a	cumulative	binding	free	
energy	(ÄG)	of	-520.13	(kcal/mol),	as	represented	
in Figure 9(b). The ÄG calculation of the was 
contributed	with	the	ÄGGAS	with	-2798.15	kcal/
mol	 while	 ÄGSOLV	with	 2278.03	 kcal/mol.	
The negative cumulative ÄG value suggests that 
the	 formation	 of	 the	 complex	 is	 energetically	
favourable when both the gas-phase interactions 
and	solvation	effects	are	considered.	It	was	evident	

that	 the	 complex	 exhibited	 high	magnitude	 of	
minimum	binding	 free	 energy	 (ÄG),	 indicating	
a	 robust	 and	 stable	 binding	 interaction	between	
vaccine	 construct	 and	 toll-like	 receptor.	 This	
observation	 suggests	 a	 favourable	 and	 enduring	
interplay between these two macromolecules.
energy Contribution for residues
	 Further,	 the	 energy	 contribution	 of	 the	
residues	of	both	variant	VLP	and	TLR	complex	
was	calculated	as	 shown	 in	Figure	9(c).	Critical	
residues	 are	 highlighted	 in	 this	 analysis	which	
contribute to the ability to form stable protein-
protein	interactions.	It	was	observed	that	the	TLR	
receptor	showed	favourable	energy	contribution	for	
residues	ARG234	with	-14.11	kcal/mol,	ARG264	
with	 -10.94	kcal/mol,	GLU266	with	 -10.6	 kcal/
mol,	 and	GLU42	with	 -10.3	 kcal/mol.	 Further,	
the	residues	that	showed	favourable	binding	free	
energy for the variant VLP were MET1 with 
-9.23	kcal/mol,	ASN172	with	-8	kcal/mol,	ARG164	
with	 -7.8	 kcal/mol,	HIS166	with	 -6.5	 kcal/mol	
and	LEU10	with	 -6.18	kcal/mol.	These	findings	
highlight	the	complex	interplay	of	multiple	types	of	
residue	interactions	that	underpin	the	stability	and	
specificity	of	the	VLP-TLR	complex,	which	may	
be	pivotal	for	the	VLP’s	immunogenic	efficacy.	

disCussion

 The progress in computational techniques 
has	resulted	in	a	substantial	reduction	in	both	the	time	
and	capital	expense	associated	with	complicated	
tasks	of	vaccine	design.	The	conventional	method	
of	vaccine	design	is	time-consuming	that	require	a	
significant	amount	of	effort	even	for	a	single	epitope	
vaccine	design.	Conversely,	in silico	methods	have	
shown	 high	 efficiency	 and	 can	 be	 effectively	
used	 in	 the	 design	 of	multi-epitope	 vaccines.	
Moreover,	 the	 application	 of	well-constructed	
databases	containing	comprehensive	data	greatly	
facilitates	the	availability	of	required	information,	
such	as	identifying	epitopes	for	a	specific	protein,	
as	 demonstrated	 in	 the	 current	 investigation.	
AI-based	tools	including	AlphaFold	have	shown	
their	efficacy	and	reliability	in	the	realm	of	protein	
structure	prediction,	illustrating	the	effectiveness	
and	dependability	of	computational	methodologies	
in	the	development	and	advancement	of	therapeutic	
treatments.	Moreover,	previous	studies	have	shown	
implementation of in silico	techniques	to	yield	a	
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reliable therapeutic outcome. Sanami.	(2021)	have	
used	 similar	 approach	 to	 design	 a	multiepitope	
vaccine against cervical cancer45.	 Furthermore,	
A S Mustafa,	 in	 another	 study	demonstrated	 the	
development	 of	multiepitope	 vaccine	 against	
Mycobacterium tuberculosis	showed	the	accuracy	
of in silico	techniques	in	vaccine	design	through	
experimental	validation.	The	experimental	results	
favored	the	in silico	approach	and	thus,	adoption	
of	these	techniques	considered	safe	and	can	yield	
satisfactory results46.
	 In	the	present	study	vaccine	construct	for	
Marburg	virus	is	constructed	using	its	three	of	the	
most	antigenic	proteins,	(1)	envelope	glycoprotein,	
(2)	transcriptional	activator	VP30,	(3)	membrane-
associated	protein	VP24.	Whereas	in	the	study	by	
Yosuaf.,	(2023)	they	used	only	glycoprotein	to	form	
a	multiepitope	screened	vaccine	construct	against	
the Marburg virus8.	Moreover,	the	final	construct	
of	 the	 multiepitope	 vaccine,	 which	 includes	
adjuvant	(TLR	agonist)	and	linkers,	was	produced	
through	 a	 series	 of	 prediction	 and	 screening	
stages.	 The	 examination	 of	 the	 final	 vaccine	
design	showed	promising	antigenicity,	along	with	
the	establishment	of	a	strong	complex	formation	
with	Toll-like	 receptors	 (TLR).	Similarly,	 in	 the	
study	by	Hasan (2019),	TLR-8	used	as	potential	
target47.	Additionally,	in	the	study	by	Soltan (2022)	
TLR-4	 also	 used	 as	 potential	 vaccine	 binder48. 
Toll-like receptors (TLRs) are proteins essential 
in	the	human	innate	immune	system,	identifying	
and	 reacting	 to	 pathogen-associated	molecular	
patterns	 (PAMPs)	 to	 defend	 against	 various	
illnesses,	 including	viral	 infection,	by	activating	
proinflammatory	cytokines	and	type	I	interferons.	
Therefore,	 as	 an	 adjuvants	TLR	 agonist	 used	
for	 influenza,	malaria,	 tuberculosis	 and	 cancer	
vaccines.	In	this	study,	the	epitopes	extracted	was	
validated	thorough	focusing	on	their	allergenicity,	
antigenicity,	and	solubility.	The	results	indicated	
that	while	the	epitopes	were	non-allergenic,	they	
exhibited	significant	antigenicity,	which	led	to	their	
selection	for	more	detailed	analysis.	Alligning	this	
finding,	the	study	conducted	by	Sami., as well as 
the	 investigation	 by	Mustafa	 and	Shantier,	 also	
showed	that	the	epitopes	displayed	no	allergenic	
properties 9,49.	 The	 current	 study	 leverages	 a	
machine	learning	model	within	the	DeepPurpose	
framework,	where	in	silico	methods	were	first	used	
to	screen	potential	epitopes	based	on	their	binding	

affinity	to	immune	receptors.	This	study	advances	
further	by	employing	an	ML	model	trained	on	a	
substantial	 dataset	 from	Skempi	 v2.0,	 enabling	
the	analysis	of	a	more	extensive	array	of	mutants	
at	a	fraction	of	the	time.	Conjoint	triad	model	was	
used	for	selecting	the	best	variant	VLP	based	on	
the	 affinity.	 Furthermore,	 the	 incorporation	 of	
molecular	docking	and	MD	simulation	techniques	
established	the	interaction	of	the	vaccine	construct	
with Toll-like receptors (TLRs). This stability 
points	 to	 the	potential	efficacy	of	 the	vaccine	 in	
triggering immune response against MARV.
	 Building	on	 this	 framework,	 this	 study	
is integrating multiple antigenic proteins in the 
vaccine	 construct	 that	 could	 potentially	 offer	 a	
broader	immune	response	than	a	vaccine	targeting	
a single protein. This multi-target strategy might 
confer	enhanced	protection	against	diverse	strains	
of	 the	Marburg	 virus,	 addressing	 the	 challenge	
of	 viral	 genetic	 variability.	The	 current	 study’s	
integration	 of	machine	 learning	 to	 identify	 the	
best mutant VLP sequence aligns with these 
innovative	approaches,	 showcasing	 the	potential	
for	 rapid	 and	 efficient	 vaccine	 development	
through	 computational	methods.	 Furthermore,	
the	 incorporation	 of	TLR	 agonists	 as	 adjuvants	
in	the	vaccine	design	aligns	with	emerging	trends	
in	vaccine	development,	emphasizing	the	role	of	
innate	 immunity	 in	 enhancing	 adaptive	 immune	
responses. The non-allergenic nature of our 
chosen	epitopes,	coupled	with	their	demonstrated	
antigenicity,	underscores	the	potential	for	a	strong	
and	 safe	 immune	 response.	This	 comprehensive	
approach	 sets	 a	 precedent	 for	 future	 vaccine	
designs,	 particularly	 in	 tackling	 pathogens	with	
high	mutation	rates	and	complex	pathogenicity.
	 The	 sole	 dependence	 on	 in	 silico	
methodologies,	 which	 are	 valuable	 for	 initial	
screening	 and	 predictions,	 is	 one	 of	 the	main	
limitations	 of	 this	 study.	 However,	 they	 are	
unable	 to	 fully	 replicate	 the	 complexities	 of	
biological	 systems.	 Despite	 their	 robustness,	
the	computational	models	do	not	encompass	 the	
complete spectrum of immune responses that may 
manifest	 in	 vivo,	 including	potential	 unforeseen	
interactions with other immune cells or variations 
in	 human	 genetic	 backgrounds.	Additionally,	
the	 vaccine	 candidate’s	 immunogenicity,	 safety,	
and	 toxicity	must	 be	 evaluated	 in	 a	 controlled	
laboratory	 environment	 by	 conducting	 in	 vitro	
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studies	to	validate	its	predicted	efficacy,	stability,	
and	binding	affinities.	Furthermore,	it	is	imperative	
to	 conduct	 in	 vivo	 trials	 in	 appropriate	 animal	
models	to	assess	the	vaccine’s	capacity	to	induce	
protective	immunity,	ascertain	the	optimal	dosage,	
and	 identify	 any	 adverse	 effects.	The	 vaccine’s	
real-world	 applicability	 is	 still	 uncertain	 in	 the	
absence	of	these	critical	experimental	validations.	
Consequently,	 although	 this	 investigation	
establishes	 a	 critical	 foundation,	 additional	
experimental	 research	 is	 necessary	 to	 verify	 the	
vaccine’s	clinical	application	potential.

ConClusion 

	 In	 this	 study,	 a	 novel	 peptide	 vaccine	
against	the	MARV	was	designed,	utilizing	immune-
informatics	 techniques,	machine	 learning	 that	
solidified	 by	molecular	 docking	 and	 simulation	
trials.	This	innovative	vaccine	design	incorporates	
a	 blend	 of	 linear	B-cell	 epitopes	with	 epitopes	
targeting	 cytotoxic	 and	 helper	T	 lymphocytes.	
Following	 this,	 an	 adjuvant	 and	 various	 linkers	
were	 incorporated	 to	 create	 a	 cohesive	 epitope	
structure.	This	 led	 to	 the	 construct	 of	 a	 subunit	
vaccine	 construct/	 virus-like	 particle	 (VLP),	
combining	B	 and	T	 cell	 epitopes	 connected	 by	
appropriate	 linkers.	Advanced	 computational	
and	machine	 learning	methods	have	enabled	 the	
development	 and	 screening	 of	multiple	 vaccine	
construct/VLP	variations	that	optimise	linkers	in	a	
VLP	sequence.	The	affinity	of	the	wild	and	variant	
vaccine	construct/VLP	for	TLR-4	was	confirmed	
through	molecular	 docking	 and	MM/GBSA	 that	
established	stronger	binding	with	TLR4	to	generate	
the immune response. The variant VLP emerges as a 
more	promising	candidate	for	subsequent	stages	of	
vaccine	development,	highlighting	its	potential	for	
eliciting a robust immunological response against 
its	target.	The	molecular	dynamics	simulation	and	
MM/GBSA	binding	 free	 energy	 analysis	 shows	
that	 the	 vaccine-TLR4	 complex	 is	 structurally	
stable,	and	has	strong	and	favourable	interaction	
over	an	extensive	simulation	period.	The	variant	
VLP	exhibited	favourable	properties	that	suggest	
its	potential	suitability	for	experimental	validation.	
The	study	highlights	the	variant	VLP’s	promise	as	
a	viable	candidate	for	further	in vitro and	in vivo 
testing.	Upon	experimental	validation,	this	vaccine	
candidate	may	provide	novel	insights	into	MARV	

neutralisation	procedures	and	aid	in	the	formulation	
of successful treatments.
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