An Up-to-Date Review of Phytochemicals and Biological Activities in *Chrysanthemum* spp

Soo Cheon Chae

Department of Horticultural Science, College of Industrial Sciences, Kongju National University, Daehak-ro 54, Yesan-kun, Chungnam, 32439, Korea.

http://dx.doi.org/10.13005/bbra/2077

(Received: 10 April 2016; accepted: 01 June 2016)

The Chrysanthemum is a well-known traditional Chinese medicinal herb which has been used as a drug for thousands of years. From the detailed literature survey it is determined that the dried flowers of Chrysanthemum contain organic groups such as alkanes, flavonoids, terpinoids, unsaturated fatty acids and polysaccharides which belongs to Secondary constituents in Phytochemicals classification. The knowledge and analysis of bioactive compounds present in the Chrysanthemums can be used for next generation drug development process. The developments of new drugs against diabetes and prostate cancer have become global concern. Hence the present study leads to identify the new strategies which are needed to develop multi-functional drugs against various human diseases using Chrysanthemum plant. Owing to antifungal, antibacterial and anti-inflammation activities, Chrysanthemum have much attention in the field of biomolecules research. In general Phytochemicals can be classified as primary and secondary constituents. One can understand the fascinating properties of biological compounds via phytochemical analysis which are present in the plants. Therefore, the present study gives a better understanding of phytochemical properties of Chrysanthemum and new foundations for the production of non-toxic and eco-friendly drugs of today and the future.

Keywords: Chrysanthemum, Phytochemicals, Biological activities.

Introduction of Chrysanthemum spp.

Chrysanthemums have a wide range of applications such as efficient drugs for various diseases in traditional medicinal field, healthy herbal tea in food processing, hardy blooms in gardening, and indoor air pollution control in environmental monitoring. In addition to the above appearance, aroma and color of the *Chrysanthemums* are the main attractive features to researchers. Aroma plays a vital role in determination of quality and market price of *Chrysanthemums*. Traditional medicines from these plants have promising properties in improving liver function, decreasing inflammation. These perennial flowering plants are commonly available in Asia, northeastern Europe and most species originate from East Asia^{1,2}. According to the literature survey more varieties of Chrysanthemums are mainly cultivated in china such as Shen-nong Sweet Chrysanthemum, Tender Huang-ju, Chamomile Flower, Hangzhou White Chrysanthemum, Florists Chrysanthemum, etc³⁻⁵. *Chrysanthemum* plants belong to Asteraceae family which has low molecular components include flavonoids⁶, sesquiterpenes⁷, triterpenes⁸, and unsaturated fatty acids9. The volatile chemical compounds of Chrysanthemum essential oil are mainly composed of monoterpenes, sesquiterpenes, aldehydes, acids, esters and alcohols ¹⁰⁻¹². Recently, some researchers have paid

^{*} To whom all correspondence should be addressed. Tel: +82-41-330-1223; Fax: +82-41-330-1229; E-mail: scchae@kongju.ac.kr

Table 1. Recent studies on	phytochemicals of	Chrysanthemum spp.
----------------------------	-------------------	--------------------

Key findings	Reference
Recently, chrysanthemum flowers are known as a unique class of material which possess nutritional rich contents such as chlorophyll, carotenoids, soluble sugar, amino acid, vitamin C, flavonoid and chlorogenic acid at the time of bud stage and young flower stage. On the other hand, chrysanthemum flowers having great potential to produce active contents. Therefore both bud stage and young flower stage have been doed here both bud stage and	Ma et al., 2016
A fundamental understanding study has been made for the optimal time of harvesting of chrysanthemum flowers. From the analysis it is concluded that at the early flower opening stage, the contents of flavonoids and volatile oil were higher. On the other hand the content of chlorogenic acid, luteolin, 3,5-O-dicaffeoyl quinic acid were higher in the middle of the flowers. From the overall analysis 50% -80% fowers blossoming stage was attributed as the optimal time for harvest18.	Wu et al., 2016
Generally, ±-pinene, ² -thujene, ±-terpinolen, ² -cubebene, caryophyllene, (Z) ² -farnesene, (-)-spathulenol, linalool, camphor, camphene, 4-terpineol, Z-citral and 4-isopropyltoluene are typical aroma compounds covered with characteristic aroma of Chrysanthemum essential oils19.	Xiao <i>et al.</i> , 2016
Totally, 21 compounds were isolated and identified from Leaves of "Chuju" Chrysanthemum morifolium named as octa-cosyl alcohol, ² -sitosterol, lupeol, ±-amyrin, daucosterol, ineupatorolide B, syringin, chlorogenic acid, petasiphenol, physcion, acacetin, eupatilin, quercetin, diosmetin, luteolin, apigenin, apigenin- 7-O- ² -D-glucopyranoside, quercetin-3-O- ² -D-glucopyranoside, luteolin-7-O- ² -D-gluco pyranoside, apigenin-7-O- ² -D- neospheroside, and acacetin-7-O- ² -D-glucoside20.	Wei <i>et al.</i> , 2015
Leaves of Chrysanthemum morifolium are the most widely used well known medicinal resource. The present study mainly foccusses to estimate the main bioactive components such as flavonoids, galuteolin, quercitrin, chlorogenic acid and 3.5-O-caffeovlquinic acid21.	Wang <i>et al.</i> , 2015
An overall assessment using biochemical and differential proteomic data revealed that UV-B radiation could affect biochemical reaction and promote secondary metabolism processes in postharvest flowers22.	Yao <i>et al.</i> , 2015
The flowers of twenty-three cultivars of Chrysanthemum contained the anthocyanins, Park cyanidin 3-glucoside and cyanidin 3-(3"-malonoyl) glucoside and the following carotenoids: lutein, zeaxanthin, ² -cryptoxanthin, 13-cis- ² -carotene, ±-carotene, trans- ² -carotene, and 9-cis- ² -carotene23.	et al., 2015
A microwave-assisted extraction approach which is mainly based on ionic liquids of different chain lengths was successfully applied to the extraction of ten flavonoid glycosides from the flowering heads of Chrysanthemum morifolium Ramat. The main components were identified as flavonoid glycosides, including three luteolin glycosides, three apigenin glycosides, three kaempferide glycosides, and one acacetin glycoside24.	Zhou et al., 2015
Currently, chrysanthemum flowers becoming major research interest due to its major volatile compounds. Therefore, identification of the major volatile compounds and their relative concentrations in chrysanthemum flowers are essential. The major volatile compounds are camphor, ±-pinene, chrysanthenone, safranal, myrcene, eucalyptol, 2,4,5,6,7,7ab-hexahydro-1H-indene, verbenone, ² -phellandrene and camphene ²⁵	Sun <i>et al.</i> , 2015
In this study, three-channel liquid chromatography with electrochemical detection method was applied to the quantitative analysis of caffeoylquinic acids and flavonoids in four cultivars of Chrysanthemum morifolium flowers and their sulfur-fumigated products26.	Chen <i>et al.</i> , 2015

Interestingly, one new octulosonic acid derivative, chrysannol A, along with 17 known compounds, was isolated from Chrysanthemum indicum flowers27.	Luyen et al., 2015
The appropriate UV-B radiation intensity did not decrease in flower yield, and could regulate phenylalanine ammonia lyase enzyme activity and increase active ingredients (anthocyanins, proline, ascorbic acid, chlorogenic acid and flavone) 1 content in flowers of two chrysanthemum varieties28.	Yao <i>et al.</i> , 2014
Five flavones were isolated from Chrysanthemum coronarium L., among them four of which were isolated for the first time from the genus Chrysanthemum. Two were the flavonoid aglycones 5,7-dihydroxy-3,6,4'-trimethoxyflavone and scutellarin-6,7-dimethyl ether. A new flavonoid glycoside, apigenin-7-O- [2"(6"'-O-beta-D-acetylglucopyranosyl)]-6"-O-acetylglucopyranoside, along with two known ones, i. e. apigenin-7-O-(2"-O-beta-D-glucopyranosyl)-beta- D-glucopyranoside and 6-methoxy quercetin-7-O-beta-D-glucopyranoside, ware identified20	Abd-Alla etal, 2014
On the basis of the aroma-extract dilution analysis, the odour activity value	Usami et al 2014
and sensory evaluations bicyclic monoterpenes (borneol bornyl acetate	05um er ur., 2014
and camphor) and 2-carvophyllene are considered to be the main aroma-active	
compounds of both extraction methods 30.	
A water-soluble polysaccharide (P2) with a molecular weight of $1.7 \times 10(5)$ Da	Liang <i>et al.</i> , 2014
was isolated from the hot aqueous extract of flowers of the Chrysanthemum	214119 01 011, 2011
morifolium. Monosaccharide analysis revealed that P2 is an arabinogalactan	
containing arabinose (38.4% w/w), galactose (58.8% w/w), and glucose (2.8% w/w)	
in a ratio of 1:1.53:0.0731.	
The nine phenolic compounds [(Z)-2- ² -d-glucopyranosyloxy-4-methoxycinnamic acid (cis-GMCA), chlorogenic acid, (E)-2- ² -d-glucopyranosyloxy-	Avula <i>et al.</i> , 2014
4-methoxycinnamic acid (trans-GMCA), quercetagetin-7-O- ² -d-glucopyranoside, luteolin-7-O- ² -d-glucoside, apigenin-7-O- ² -d-glucoside, chamaemeloside, apigenin 7-O-(63 -O-acetyl- ² -d-glucopyranoside), apigenin] and one polyacetylene (tonghaosu) from the flower heads of Chamomile/Chrysanthemum samples has been examined simultaneously by the new rapid UHPLC-UV-QTOF/MS method.32.	
Identification of chlorogenic acid, caffeic acid, 1,3-dicaffeoylquinic acid, 3, 5-dicaffeoylquinic acid, luteolin-7-O-beta-D-glucoside, 3,4-dicaffeoylquinic acid, linarin and luteolin in <i>Chrysanthemum indicum</i> was established using a high- performance liquid chromatography (HPLC) 33.	Dai <i>et al.</i> , 2013
In GC-MS analysis 35 compounds were identified, and HPLC-PAD methods	Wu et al., 2013
were reconfirmed and quantitatively determined 5 compounds (chlorogenic acid, luteolin-7-glucoside, linarin, luteolin and acacetin) in phytochemical studies.	
CC MS with HDLC DAD and investigated possible mechanisms ³⁴	
Analysis of essential oil from Flower and leaf were determined 38 and 36	Usami et al. 2013
components representing 96.4 and 91.0% of the total oil composition respectively	0 saini ei ai., 2015
The most important compound in flower oil were camphor (47 64%) hornyl	
acetate (11.87%) and noijoiku alcohol (6.29%), whereas those in leaf oil were	
camphor (39,14%), noijgiku alcohol (10,76%) and 3-muurolene (7,02%)	
13 Aroma-active compounds from flower oil and 12 in leaf oil were determined	
by GC-Q analysis 35.	
The combination of HPLC/UV and PCA in pressurized hot water extraction	Liu et al 2013
can be used favorably as a green and productive approach for	,
characterization and quality control of ubiquitous functional food	
such as chrysanthemum36.	

Table 2	2. Recent	studies of	on bio	logical	activities	of	Chrysantl	hemum	spp	•
---------	-----------	------------	--------	---------	------------	----	-----------	-------	-----	---

 Key findings	Reference
Owing to non-toxic and abundance snow chrysanthemum antioxidants become a better alternative to Chrysanthemum morifolium. Snow chrysanthemum possesses	Chen et al., 2016
higher antioxidant activity compared to Chrysanthemum morifolium.	
Therefore the research interest arises in snow chrysanthemum due to its	
excellent antioxidant activity ⁴³ .	Sup at al. 2016
photoaging become a global concern. The active components in wild chrysanthemum extract are a promising candidate in drug development for above mentioned	Sun <i>et a</i> ., 2016
It is important to mention here that, the essential oil of the Jordanian Chrysanthemum coronarium L. (garland) which is isolated from flower heads having excellent antimicrobial activities against both Gram-negative and Gram-positive bacteria. According to the survey globally more than 1 million people get colon cancer every year. Hence, more effort has been made by researchers towards sensitivity of	Bardaweel et al., 2015
oil treatments to colon cancer. ⁴⁷ .	
It is noteworthy to mention here that, 3,5-diarylpyrazole analogues become one of the best alternatives to bioactive compounds, as it exhibit several advantages like A ² aggregation, neuroprotective activity which are useful in Alzheimer's disease treatment ⁴⁸ .	Wu <i>et al.</i> , 2015
Interestingly, water-soluble polysaccharide scavenges the DPPH radicals which are caused by H_2O_2 . The anti-oxidative analysis showed PC12 cells damage has been prevented by water-soluble polysaccharide. Hence, it is found as potential natural antioxidant ⁴⁹	Zheng et al., 2015
Chrysanthemum indicum ethanol extract could attenuate cisplatin-induced nephrotoxici and might be a beneficial agent for acute renal failure management ⁵⁰ .	ty Kim <i>et al.</i> , 2015
Chrysanthemum morifolium flower extract successfully absorbs luteolin and luteolin monoglucoside, luteolin monoglucuronide and leads to better circulation in humans ⁵¹	Yasuda <i>et al.</i> , 2015
The elevated adiponectin levels lead to amelioration of insulin resistance and the corresponding hypoglycemic effects. Therefore, a hot water extract of edible Chrysanthemum morifolium treated as a potential food for type 2 diabetes ⁵² .	Yamamoto et al., 2015
In the case of Proanthocyanidins extracted from Kunlun Chrysanthemum flowers, antiaging effect on Drosophila has been noted. In the present study PKCF is found as a suitable candidate in health care, medicine, and cosmetics ⁵³ .	Jing et al., 2015
Chrysanthemum indicum extract could have a potential therapeutic role in bone-related disorders due to its dual effects on osteoclast and osteoblast differentiation ⁵⁴ .	Baek et al., 2014
The supercritical-carbon dioxide fluid extract from Chrysanthemum indicum Linne plays a vital role against lipopolysaccharide-induced acute lung injury (ALI) in mice. Thus, it can be referred as a potential therapeutic drug for ALI. Its mechanisms were at least partially associated with the modulations of TLR4 signaling nathways ⁵⁵	Wu <i>et al.</i> , 2014
The oral intake of peptide mixture and the aqueous extract of Chrysanthemum morifolium had synergistic antimelanogenic and antioxidative effects in	Gui et al., 2014
UV-irradiated mice ⁵⁶ . According to the literature survey, it can be concluded that fifty compounds were identified from essential oils of the leaves, stems and roots of Chrysanthemum trifurcat (Desf.) Batt. and Trab. var. macrocephalum. The oil and methanolic extact from C. trifurcatum leaves showed a great potential of antibacterial effect against Bacillus subtilis and Staphylococcus epidermidis, with an IC50 range of	Sassi <i>et al.</i> , 2014 um
51.25-62.5 μg/ml ^{-'} . The water fraction of Chrysanthemum zawadskii extracts stimulated the	Li et al., 2014

differentiation and proliferation of pluripotent epidermal matrix cells in the matrix	
region and epithelial stem cells found in the basal layer of the epidermis. The water	
fraction of Chrysanthemum zawadskii extracts may be developed as a therapeutic	
agent for the prevention of hair loss ⁵⁸ .	
Chrysanthemum indicum is widely used to treat immune-related and infectious	Hwang et al., 2014
disorders in East Asia. C. indicum flower oil contains 1,8-cineole, germacrene D,	
camphor, ±-cadinol, camphene, pinocarvone, ² -caryophyllene, 3-cyclohexen-1-ol,	
and ³ -curcumene. Intake of C. indicum flower oil produces no acute oral toxicity,	
bone marrow micronucleus, and bacterial reverse mutation ⁵⁹ .	
Chrysanthemum zawadskii Herbich var. latilobum Kitamura ethanol extract	Gu et al., 2013
negatively regulates osteoclast differentiation. It act as a potential therapeutic	
candidate for the treatment of various bone diseases, such as postmenopausal	
osteoporosis, rheumatoid arthritis, and periodontitis ⁶⁰ .	
Chrysanthemum zawadskii extract attenuates 2-deoxy-D-ribose-induced cell	Suh et al., 2013
damage in osteoblastic cells and may be useful for the treatment of diabetes-associated	
bone disease ⁶¹ .	
The hot water extract of Chrysanthemum indicum L. flower inhibited bioactivation	Jeong et al., 2013
of CCl4-induced hepatotoxicity and downregulates CYP2E1 expression in vitro	
and in vivo studies ⁶² .	
Linarin and its aglycone, acacetin from flowers or leaves of Chrysanthemum	Nugroho et al., 2013
boreale exhibited sedative and anticonvulsant activities in the present in vivo assays.	
It can be considered that linarin is one of the promising active compounds effective	
against anxiety, insomnia, and stress, with acacetin as its active moiety ⁶³ .	
The Chrysanthemum lavandulifolium extract, which includes chrysoeriol,	Kim et al., 2013
sudachitin, and acacetin, has challenging antibiotic effects on Escherichia	
coli O157:H7 (E. coli O157). The multi-target efficacy of the Chrysanthemum	
lavandulifolium extract may indicate the potential for the development of more	
effective and safer drugs that will act as substitutes for existing antibiotics ⁶⁴ .	

more attention to characterize the aroma compounds of flowers and essential oils. Xia et al.,¹³ used GC– MS to analyze the volatile chemical composition from *Chrysanthemum*. *C.morifolium* is a most widely used hardy variety, available in many colours which are a better choice for gardens.

Phytochemicals of Chrysanthemum spp.

Phytochemicals are biologically active chemical compounds which are derived from plants. They have many health benefits for humans further than those attributed to macronutrients and micronutrients. They play a key role to protect plants from pathogenic infections and damage. Plants have different types of phytochemicals such as Phenolic Acids, Flavonoids and Lignans which contribute to the plant's color, aroma and flavor. Phytochemicals accumulation takes place in different parts of the plants, such as roots, stems, leaves, flowers, fruits and seeds¹⁴. More than 4,000 phytochemicals have been cataloged¹⁵ and are classified by protective function, physical characteristics and chemical characteristics¹⁶. From the survey of more than 80 research papers it is estimated that About 150 phytochemicals have been studied in detail. Chrysanthemum spp. Leaf contains octa-cosyl alcohol, 2-sitosterol, lupeol, ±-amyrin, daucosterol, ineupatorolide B, syringin, chlorogenic acid, petasiphenol, physcion, acacetin, eupatilin, quercetin, diosmetin, luteolin, apigenin, apigenin- 7-O-2-D-glucopyranoside, quercetin-3-O-2-D-glucopyranoside, luteolin-7-O-2-D-gluco pyranoside, apigenin-7-O-2-D- neospheroside, and acacetin-7-O-2-D-glucoside. Most of the Chrysanthemum spp flowers contain anthocyanins, cyanidin 3-glucoside and cyanidin 3-(3"-malonoyl) glucoside and carotenoids: lutein, zeaxanthin, ²-cryptoxanthin, 13-cis-²-carotene, ±carotene, trans-2-carotene, and 9-cis-2-carotene. The major volatile compounds present in the plants are camphor, ±-pinene, chrysanthenone, safranal, myrcene, eucalyptol, 2,4,5,6,7,7abhexahydro-1H-indene, verbenone, ²-phellandrene and camphene. Recent studies reported by several researchers about phytochemicals found in leaves,

flower and essential oil from *Chrysanthemum* spp are showed in table 1.

Biological activities of Chrysanthemum spp.

The phytochemicals play a significant influence to prevent diseases and promoting health has been studied extensively to establish their efficacy. Identification and isolation of the chemical components, establishment of their biological potency carried out by many researchers both in vitro and in vivo studies have been analyzed through literature survey. From this review, the experimental details reported in literatures which are done in animals, through epidemiological and clinical-case control studies in man are clearly described in table 2. Overproduction of free radicals can induce many human diseases such as diabetes, cancer, stroke, rheumatoid arthritis and atherosclerosis³⁷⁻³⁹. Antioxidants can alleviate the oxidative stress, which is beneficial for human health⁴⁰. However, some currently used synthetic free radical scavengers have been demonstrated various side effects^{41,42}. Therefore, functional foods become a promising source of natural antioxidants^{43,44}. It is noteworthy to mention here that Chrysanthemum spp. has many health and medicinal properties such as Antioxidant, skin cancer, antimicrobial activities and various bone diseases. Recent studies on biological activities of Chrysanthemum spp reported by various researchers are shown in table 2

CONCLUSION

The analysis based on this detailed literature survey it is concluded that Chrysanthemum spp is the best choice for researchers to develop multifunctional drugs. Among various medicinal herbs Chrysanthemum spp is one of the non-toxic, biocompatible and ecofriendly herbs. In order to develop more effective drugs in future for various pathogens one should recognizes phytochemicals and their performances. This paper presents an overview of Chrysanthemum spp phytochemicals and their biological activities in recent years reported by various research groups. Many research works have been done on phytochemicals of flowers and leafs of Chrysanthemum spp plant. But more innovative research work still required find new

phytochemical compounds which lead to develop new pharmaceutical compounds.

REFERENCES

- Deng, C., Mao, Y., Yao, N., Zhang, X. Development of microwave-assisted extraction followed by headspace solid-phase micro extraction and gas chromatography-mass spectrometry for quantification of camphor and borneol in Flos *Chrysanthemi Indici. Anal. Chim. Acta.*, 2006; **575**: 120.
- Liu, F., Ong, E.S., Li, S.F. A green and effective approach for characterization and quality control of Chrysanthemum by pressurized hot water extraction in combination with HPLC with UV absorbance detection. *Food Chem.*, 2013; 141: 1807.
- Lin, L.Z., Harnly, J.M. Identification of the phenolic components of Chrysanthemum flower (*Chrysanthemum morifolium* Ramat), *Food Chem.* 2010; **120**: 319.
- 4. Chu, Q., Fu, L., Guan, Y., Ye, J. Determination and differentiation of Flos Chrysanthemum based on characteristic electrochemical profiles by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem., 2004; **52**: 7828.
- Lai, J.P., Lim, Y.H., Su, J., Shen, H.M., Ong, C.N. Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD–APCI/MS. J. Chromatogr. B: Biomed. Sci. Appl. 2007; 848: 215.
- Miyazawa, M., Hisama, M. Antimutagenic Activity of Flavonoids from *Chrysanthemum* morifolium. Biosci., Biotechnol., Biochem., 2003; 67: 2091–2099.
- Yoshikawa, M., Morikawa, T., Toguchida, I., Harima, S., Matsuda, H. Medicinal Flowers. II.1) Inhibitors of Nitric Oxide Production and Absolute Stereostructures of Five New Germacrane-Type Sesquiterpenes, Kikkanols D, D Monoacetate, E, F, and F Monoacetate from the Flowers of Chrysanthemum indicum L.Chem. Pharm. Bull., 2000; 48: 651–656.
- Ukiya, M., Akihisa, T., Yasukawa, K., Kasahara, Y., Kimura, Y., Koike, K., Nikaido, T., Takido, M. Constituents of compositae plants. 2. Triterpene diols, triols, and their 3-o-fatty acid esters from edible chrysanthemum flower extract and their anti-inflammatory effects. J. Agric. Food Chem. 2001; 49: 3187–3197.
- 9. Tsao, R., Attygalle, A.B., Schroeder, F.C.,

620

Marvin, C.H., McGarvey, B.D. Isobutylamides of Unsaturated Fatty Acids from *Chrysanthemum morifolium*. Associated with Host-Plant Resistance against the Western Flower Thrips. J. Nat. Prod. 2003; **66**: 1229– 1231.

- Jian, L., Sun, M., Zhang, Q. Analysis on aroma compositions in flowers, stemsand leaves of Chrysanthemun indicum var. Aromaticum. J. Northwest A & FUniv. (Nat. Sci. Ed.)., 2014; 11: 87.
- Zhu, W., Xie, C. Huang, L., Rong, L., Fang, N., Yu, S. GC–MS analysis of SFE extracts from four kind of Chrysanthemun. *Amino Acids Biot. Resour.*, 2009; **31**: 69.
- He, Z., Zou, D., Xie, J., Bai, B., Liao, X., Peng, S. Chemical analysis of the essentialoil from the flowers of Cremanthodium brummeo-pilosum by GC–MS. *J.Instrum. Anal.*, 2008; 27: 68.
- 13. Xia, X., Xiao, J., Xia, T. Analysis of volatile chemical composition from Chrysanthemum indicum in Hubei Wufeng by GC–MS, Chin. J. *Exp. Tradit. Med.Formul.*, 2013; **19**: 132
- Costa, M.A., Zia, Z.Q., Davin, L.B., Lewis, N.G. Chapter Four: Toward Engineering the Metabolic Pathways of Cancer-Preventing Lignans in Cereal Grains and Other Crops. *In Recent Advances in Phytochemistry.*, 1999; 33: 67-87.
- American Cancer Society. Phytochemicals. Available at http://www.cancer.org/eprise/main/ docroot/ETO/c ontent/ ETO_5_3X_Phytochemicals, June 2000.
- Meagher, E., Thomson, C. Vitamin and Mineral Therapy. In Medical Nutrition and Disease, *Blackwell Science Inc*, 1999; 2: 33-58.
- Ma, C.H., Chu, J.Z., Shi, X.F., Liu, C.Q., Yao, X.Q. Effects of enhanced UV-B radiation on the nutritional and active ingredient contents during the floral development of medicinal chrysanthemum. *J Photochem Photobiol* 2016; 158: 228-234.
- Wu, X.X., Sun, Y.M., Shen, X.X., Wang, Z.A. Study on combined effects of chemical components for different flowers blossoming degree of yellow medicinal Chrysanthemum morifolium from Zhejiang]. *Zhongguo Zhong Yao Za Zhi*. 2015; **40**(16): 3174-3178.
- Xiao, Z., Fan, B., Niu, Y., Wu, M., Liu, J., Ma, S. Characterization of odor-active compounds of various Chrysanthemum essential oils by gas chromatography-olfactometry, gas chromatography-mass spectrometry and their correlation with sensory attributes. J Chromatogr B Analyt Technol Biomed Life Sci., 2016;1009-1010: 152-162.

- Wei, Q., Ji, X.Y., Long, X.S., Li, Q.R., Yin, H. Chemical Constituents from Leaves of "Chuju" Chrysanthemum morifolium and Their Antioxidant Activities in vitro. *Zhong Yao Cai*. 2015; **38**(2):305-310.
- Wang, T., Shen, X.G., Guo, Q.S., Zhou, J.S., Mao, P.F., Shen, Z.G. Comparison of major bioactive components from leaves of Chrysanthemum morifolium. *Zhongguo Zhong* YaoZa Zhi. 2015; 40(9):1670-1675.
- Yao, X., Chu, J.Z., Ma, C.H., Si, C., Li, J.G., Shi, X.F., Liu, C.N. Biochemical traits and proteomic changes in postharvest flowers of medicinal chrysanthemum exposed to enhanced UV-B radiation. *J Photochem Photobiol B.*, 2015; 149: 272-279.
- Park, C.H., Chae, S.C., Park, S.Y., Kim, J.K., Kim, Y.J., Chung, S.O., Arasu, M.V., Al-Dhabi, N.A., Park, S.U. Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema grandiflorum Ramat.) Flower. *Molecules.*, 2015; 20(6):11090-102.
- Zhou, Y., Wu, D., Cai, P., Cheng, G., Huang, C., Pan, Y. Special Effect of Ionic Liquids on the Extraction of Flavonoid Glycosides from Chrysanthemum morifolium Ramat by Microwave Assistance. *Molecules.*, 2015; 20(5): 7683-7699.
- Sun, H., Zhang, T., Fan, Q., Qi, X., Zhang, F., Fang, W., Jiang, J., Chen, F., Chen, S. Identification of floral scent in chrysanthemum cultivars and wild relatives by gas chromatography-mass spectrometry. *Molecules.*, 2015; 20(4): 5346-5359.
- Chen, L., Kotani, A., Kusu, F., Wang, Z., Zhu, J., Hakamata, H. Quantitative comparison of caffeoylquinic acids and flavonoids in Chrysanthemum morifolium flowers and their sulfur-fumigated products by three-channel liquid chromatography with electrochemical detection. *Chem Pharm Bull (Tokyo).*, 2015; 63(1):25-32.
- 27. Luyen, B.T., Tai, B.H., Thao, N.P, Cha, J.Y., Lee, H.Y., Lee, Y.M., Kim, Y.H. Antiinflammatory components of Chrysanthemum indicum flowers. *Bioorg Med Chem Lett.* 2015; **25**(2):266-269.
- Yao, X.Q., Chu, J.Z., He, X.L., Si, C. The effects of UV-B radiation intensity on biochemical parameters and active ingredients in flowers of Qi chrysanthemum and Huai chrysanthemum. *Photochem Photobiol.*, 2014; **90**(6): 1308-1313.
- 29. Abd-Alla, H.I., Albalawy, M.A., Aly, H.F., Shalaby, N.M., Shaker, K.H. Flavone composition and antihypercholesterolemic and

antihyperglycemic activities of Chrysanthemum coronarium L. *Z Naturforsch C.*, 2014; **69**(5-6):199-208.

- Usami, A., Nakahashi, H., Marumoto, S., Miyazawa, M. Aroma evaluation of setonojigiku (Chrysanthemum japonense var. debile) by hydrodistillation and solvent-assisted flavour evaporation. *Phytochem Anal.*, 2014; 25(6): 561-566.
- Liang, F., Hu, C., He, Z., Pan, Y. An arabinogalactan from flowers of Chrysanthemum morifolium: structural and bioactivity studies. *Carbohydr Res.*, 2014; 87: 37-41.
- 32. Avula, B., Wang, Y.H., Wang, M., Avonto, C., Zhao, J., Smillie, T.J., Rua, D., Khan, I.A. Quantitative determination of phenolic compounds by UHPLC-UV-MS and use of partial least-square discriminant analysis to differentiate chemo-types of Chamomile/ Chrysanthemum flower heads. J Pharm Biomed Anal., 2014; 88: 278-288.
- Dai, S., Zhang, M., Cheng, W.M., Zhang, X., Zhang, Q.L., Li, J. Simultaneous determination of eight active components in Chrysanthemum indicum by HPLC. *Zhongguo Zhong Yao Za Zhi.*, 2013; **38**(12): 1961-1965.
- Wu, X.L., Li, C.W., Chen, H.M., Su, Z.Q., Zhao, X.N., Chen, J.N., Lai, X.P., Zhang, X.J., Su, Z.R. Anti-Inflammatory Effect of Supercritical-Carbon Dioxide Fluid Extract from Flowers and Buds of Chrysanthemum indicum Linnén. *Evid Based Complement Alternat Med.*, 2013; 2013: 413237.
- Usami, A., Ono, T., Marumoto, S., Miyazawa, M. Comparison of volatile compounds with characteristic odor in flowers and leaves of nojigiku (Chrysanthemum japonense). *J Oleo Sci.*, 2013; 62(8): 631-636.
- Liu, F., Ong, E.S., Li, S.F. A green and effective approach for characterisation and quality control of chrysanthemum by pressurized hot water extraction in combination with HPLC with UV absorbance detection. *Food Chem.*, 2013; 141(3):1807-1813.
- De Rosa, S., Cirillo, P., Paglia, A., Sasso, L., Di Palma, V., Chiariello, M. Reactive oxy-gen species and antioxidants in the pathophysiology of cardiovascular disease:does the actual knowledge justify a clinical approach? *Curr. Vasc. Pharmacol.*, 2010; 8: 259–275.
- Oyagbemi, A.A., Azeez, O.I., Saba, A.B. Interactions between reactive oxygenspecies and cancer: the roles of natural dietary antioxidants and their molecularmechanisms of action, *Asian Pac. J. Cancer Prev.*, 2009; **10**: 535–544.
- 39. Yao, X., Gu, C., Tian, L., Wang, X., Tang, H.

Comparative study on the antioxidantactivities of extracts of Coreopsis tinctoria flowering tops from Kunlun Moun-tains, Xinjiang, northwestern China. *Nat. Prod. Res.*, 2015; http://dx.doi.org/10.1080/14786419.2015.1015019.

- Pandolfo, M. Drug Insight: antioxidant therapy in inherited ataxia. *Nat. Clin.Pract. Neuro.*, 2008; 4: 86–96.
- 41. Blaszczyk, A., Skolimowski, J. Comparative analysis of cytotoxic, genotoxicand antioxidant effects of 2,2,4,7-tetramethyl-1,2,3,4tetrahydroquinolineand ethoxyquin on human lymphocytes. *Chem. Biol. Interact.*, 2006; **162**: 70–80.
- 42. BBaszczyk, A., Skolimowski, J., Materac, A. Genotoxic and antioxidant activities ofethoxyquin salts evaluated by the comet assay. *Chem. Biol. Interact.*, 2006; **162**: 268–273.
- 43. Qian, Z.M., Guan, J., Yang, F.Q., Li, S.P. Identification and quantification of freeradical scavengers in Pu-erh tea by HPLC-DAD-MS coupled online with 2,2_-azinobis(3ethylbenzthiazolinesulfonic acid)diammonium salt assay. J. Agric.Food Chem., 2008; 56: 11187–11191.
- 44. Li, S.Y., Yu, Y., Li, S.P. Identification of antioxidants in essential oil of radix Angel-icae sinensis using HPLC coupled with DAD-MS and ABTS-based assay. J. Agric.Food Chem., 2007; **55**: 3358–3362.
- 45. Chen, L.X., Hu, D.J., Lam, S.C., Ge, L., Wu, D., Zhao, J., Long, Z.R., Yang, W.J., Fan, B., Li, S.P. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid) diammonium salt-based assay. *J Chromatogr A*. 2016; **1428**: 134-142.
- Sun, S., Jiang, P., Su, W., Xiang, Y., Li, J., Zeng, L., Yang, S. Wild chrysanthemum extract prevents UVB radiation-induced acute cell death and photoaging. *Cytotechnology.*, 2016; 68(2): 229-240.
- 47. Bardaweel, S.K., Hudaib, M.M., Tawaha, K.A., Bashatwah, R.M. Studies on the In Vitro Antiproliferative, Antimicrobial, Antioxidant, and Acetylcholinesterase Inhibition Activities Associated with Chrysanthemum coronarium Essential Oil. Evid Based Complement Alternat Med., 2015; 2015: 790838.
- Wu, T., Jiang, C., Wang, L., Morris-Natschke, S.L, Miao, H., Gu, L., Xu, J., Lee, K.H, Gu, Q. 3,5-Diarylpyrazole Derivatives Obtained by

Ammonolysis of the Total Flavonoids from Chrysanthemum indicum Extract Show Potential for the Treatment of Alzheimer's Disease. *J Nat Prod.*, 2015; **78**(7): 1593-1599.

- 49. Zheng, C., Dong, Q., Chen, H., Cong, Q., Ding, K. Structural characterization of a polysaccharide from Chrysanthemum morifolium flowers and its antioxidant activity. *Carbohydr Polym.*, 2015; **130**: 113-121.
- 50. Kim, T.W., Kim, Y.J., Park, S.R., Seo, C.S., Ha, H., Shin, H.K., Jung, J.Y. Chrysanthemum indicum attenuates cisplatin-induced nephrotoxicity both in vivo and in vitro. *Nat Prod Commun.*, 2015; **10**(3): 397-402.
- Yasuda, M.T., Fujita, K., Hosoya, T., Imai, S., Shimoi, K. Absorption and Metabolism of Luteolin and Its Glycosides from the Extract of Chrysanthemum morifolium Flowers in Rats and Caco-2 Cells. *J Agric Food Chem.*, 2015; 63(35): 7693-7699.
- 52. Yamamoto, J., Tadaishi, M., Yamane, T., Oishi, Y., Shimizu, M., Kobayashi-Hattori, K. Hot water extracts of edible Chrysanthemum morifolium Ramat. exert antidiabetic effects in obese diabetic KK-Ay mice. *Biosci Biotechnol Biochem.*, 2015; **79**(7): 1147-1154.
- Jing, S., Zhang, X., Yan, L.J. Antioxidant activity, antitumor effect, and antiaging property of proanthocyanidins extracted from Kunlun Chrysanthemum flowers. Oxid Med Cell Longev, 2015; 2015: 983484.
- 54. Baek, J.M., Kim, J.Y., Cheon, Y.H., Park, S.H., Ahn, S.J., Yoon, K.H., Oh, J., Lee, M.S. Dual Effect of Chrysanthemum indicum Extract to Stimulate Osteoblast Differentiation and Inhibit Osteoclast Formation and Resorption In Vitro. *Evid Based Complement Alternat Med.*, 2014; 2014:176049.
- 55. Wu, X.L., Feng, X.X., Li, C.W., Zhang, X.J., Chen, Z.W., Chen, J.N., Lai, X.P., Zhang, S.X., Li, Y.C., Su, Z.R. The protective effects of the supercritical-carbon dioxide fluid extract of Chrysanthemum indicum against lipopolysaccharide-induced acute lung injury in mice via modulating Toll-like receptor 4 signaling pathway. *Mediators Inflamm.*, 2014; 2014: 246407.
- Gui, M., Du, J., Guo, J., Xiao, B., Yang, W., Li, M. Aqueous Extract of Chrysanthemum

morifolium (Jú Hu) Enhances the Antimelanogenic and Antioxidative Activities of the Mixture of Soy Peptide and Collagen Peptide. *J Tradit Complement Med.*, 2014; **4**(3): 171-176.

- 57. Sassi, A.B., Skhiri, F.H., Chraief, I., Bourgougnon, N., Hammami, M., Aouni, M. Essential oils and crude extracts from Chrysanthemum trifurcatum leaves, stems and roots: chemical composition and antibacterial activity. *J Oleo Sci.*, 2014; **63**(6): 607-617.
- Li, Z., Li, J., Gu, L., Begum, S., Wang, Y., Sun, B., Lee, M., Sung, C. Chrysanthemum zawadskii extract induces hair growth by stimulating the proliferation and differentiation of hair matrix. *Int J Mol Med.*, 2014; **34**(1): 130-136.
- Hwang, E.S., Kim, G.H. Safety Evaluation of Chrysanthemum indicum L. Flower Oil by Assessing Acute Oral Toxicity, Micronucleus Abnormalities, and Mutagenicity. *Prev Nutr Food Sci.*, 2013; **18**(2): 111-116.
- Gu, D.R., Hwang, J.K., Erkhembaatar, M., Kwon, K.B., Kim, M.S., Lee, Y.R., Lee, S.H. Inhibitory Effect of Chrysanthemum zawadskii Herbich var. latilobum Kitamura Extract on RANKL-Induced Osteoclast Differentiation. *Evid Based Complement Alternat Med.*, 2013; 2013: 509482.
- Suh, K.S., Rhee, S.Y., Jung, W.W., Kim, N.J, Jang, Y.P., Kim, H.J., Kim, M.K., Choi, Y.K., Kim, Y.S. Chrysanthemum zawadskii extract protects osteoblastic cells from highly reducing sugar-induced oxidative damage. *Int J Mol Med.*, 2013; **32**(1): 241-250.
- 62. Jeong, S.C., Kim, S.M., Jeong, Y.T., Song, C.H. Hepatoprotective effect of water extract from Chrysanthemum indicum L. flower. *Chin Med.*, 2013; **8**(1): 7.
- 63. Nugroho, A., Lim, S.C., Choi, J., Park, H.J. Identification and quantification of the sedative and anticonvulsant flavone glycoside from Chrysanthemum boreale. *Arch Pharm Res.*, 2013; **36**(1): 51-60.
- Kim, K.S., Lim, D.J., Yang, H.J., Choi, E.K., Shin, M.H., Ahn, K.S., Jung, S.H., Um, J.Y., Jung, H.J., Lee, J.H., Lee, S.G., Jung, S.K., Jang, H.J. The multi-targeted effects of Chrysanthemum herb extract against Escherichia coli O157:H7. *Phytother Res.*, 2013; 27(9): 1398-406.