Volume 15, number 2
 Views: 
Visited 1,389 times, 1 visit(s) today
    PDF Downloads: 1395

Devi G. Utilization of Nematode Destroying Fungi for Management of Plant-Parasitic Nematodes-A Review. Biosci Biotech Res Asia 2018;15(2).
Manuscript received on : 20 May 2018
Manuscript accepted on : 25 June 2018
Published online on:  29-06-2018

Plagiarism Check: Yes

How to Cite    |   Publication History    |   PlumX Article Matrix

Utilization of Nematode Destroying Fungi for Management of Plant-Parasitic Nematodes-A Review

Gitanjali Devi  

Department of Nematology, Assam Agricultural University, Jorhat-785013, Assam, India.

Corresponding Author E-mail: gitanjali_devi@yahoo.in

DOI : http://dx.doi.org/10.13005/bbra/2642

ABSTRACT: Nematode destroying fungi are potential biocontrol agent for management of plant-parasitic nematodes. They inhibit nematode population through trapping devices or by means of enzymes and metabolic products. They regulate nematode behavior by interfering plant-nematode recognition, and promote plant growth. For more effective biocontrol, thorough understanding of the biology of nematode destroying fungi, targeted nematode pest and the soil ecology and environmental condition in the field is necessary. This review highlights different types of nematode destroying fungi, their mode of action as well as commercial products based on reports published in this area of research.

KEYWORDS: Endoparasitic Fungi; Molecular Metabolic Product; Nematode Destroying Fungi; Plant-Parasitic Nematodes; Trapping Device

Download this article as: 
Copy the following to cite this article:

Devi G. Utilization of Nematode Destroying Fungi for Management of Plant-Parasitic Nematodes-A Review. Biosci Biotech Res Asia 2018;15(2).

Copy the following to cite this URL:

Devi G. Utilization of Nematode Destroying Fungi for Management of Plant-Parasitic Nematodes-A Review. Biosci Biotech Res Asia 2018;15(2). Available from: https://www.biotech-asia.org/?p=30160

Introduction

Plant-parasitic nematodes with high population density cause economically significant yield reduction in most agricultural crops. About 12% of worldwide food production is lost due to plant-parasitic nematodes.1 The global financial loss due to plant-parasitic nematodes may be as high as US$ 121 billion.2 In India, the avoidable yield loss due to Meloidogyne incognita in vegetable crop is as high as 40.5% and annual loss in 24 crops due to economically important nematodes is estimated to the tune of Rs. 21068 million per annum.3 The development of new methods to control such nematodes is of major importance because the chemical nematicides are associated with environmental and health concerns. An alternative approach to manage plant-parasitic nematodes is the using of their natural enemies. Among them, the nematode destroying fungi, comprising a group of soil-living fungi, are natural enemies of plant-parasitic nematodes are of significant importance.4-7 Use of nematode destroying fungi as biocontrol agent either alone or integrated with other nematode management strategies offer an environmentally sustainable method. Linfordattempted for the first time to reduce plant-parasitic nematode population in soils with nematode destroying fungi.

Nematode destroying fungi or nematophagous fungi consist of a wide and diverse range of fungi. They are pathogenic or parasitic, and some of them are predacious which infect and digest nematodes. Most nematode destroying fungi are saprophytic in soil, but in the presence of a host they change from a saprophytic to a parasitic phase, mostly found in soil with high organic matter content.9 Approximately 700 species of nematode destroying fungi have been described so far.10 According to the mode of nematicidal action, Jatala11 grouped nematode destroying fungi into: (a) Nematode-trapping or predacious fungi, (b) Endozoic or endoparasitic fungi. Endozoic or endoparasitic fungi are again subdivided into (i) egg parasites, (ii) parasites of cysts and females, (iii) parasites of vermiform nematode, (iv) parasites of all the stages of nematode. Nordbring-Hertz et al12 and Yang and Zhang13 grouped nematode destroying fungi into nematode-trapping fungi, endoparasitic fungi, opportunistic fungi or egg and cyst parasitic fungi and toxin producing fungi.

Classification of Nematode Destroying Fungi

Based on morphological and molecular studies, the majority of nematode trapping fungi is hyphomycetes, within the Orbiliales (Orbiliomycetes or Ascomycota) besides Basiodiomycota and Zygomycota. The pioneering work was done by Drechsler.14 Based on morphology of conidia (shape, septa and size) and conidiophores (branching, modifications of the apex), nematode-trapping fungi have been classified in a number of genera. This classification created    a situation where species with diverse types of trapping devices have been assigned to one genus, while others with similar trapping devices can be found in different genera.15-18 Based on trapping devices, Rubner19 revised the generic concepts of the predatory hyphomycetes Hagedorn and Scholler20and Scholler et al.21 classified nematode-trapping fungi into four genera: Dactylellina characterized by stalked adhesive knobs including species characterized by nonconstricting rings and stalked adhesive knobs; Gamsylella characterized by adhesive branches and unstalked knobs; Arthrobotrys characterized by adhesive networks; and Drechslerella characterized by constricting rings. Li et al22,23 and Yang et al24 provided a generic concept of nematode-trapping fungi based on morphological as well as multiple gene data. The adhesive knob is considered to be the ancestral type of trapping device from which constricting rings and networks were derived by passing through two pathways. In the first pathway adhesive knobs retained their adhesive material forming two-dimension networks and three-dimension networks. In the second pathway adhesive knobs lost their adhesive materials, forming nonconstricting rings and constricting rings.

Some of the endoparasitic fungi viz., Catenaria anguillulae, Haptocillium (formerly Verticillium), Harposporium or Drechmeria are placed in the Chytridiomycetes, Based on morphological and molecular characters, the teleomorph of Harposporium spp. has recently been transferred from Atricordyceps to Podocrella25  and the genus Verticillium is transferred to the genus Pochonia.26

Nematode-trapping as well as endoparasites, Hohenbuehelia (anamorph Nematoctonus) are under Basidiomycota.27Another basidiomycete genus, Pleurotus ostreatus and Coprinus comatus constitutes the toxin-producing fungi.28

Nematode- Trapping or Predacious Fungi

of the 200 parasites, predacious and pathogens of nematodes known so far, approximately 75% are nematode destroying fungi. Each group utilizes a different type of trapping device to adhere to or to attack nematodes (Table.1). They are found in all regions of the world, from the tropics to the Antarctica.29 Most of them can grow both as saprophytes, decaying organic matters as substrates, and as parasites, using nematodes as nutrients.30 The density of nematicidal fungi is highest in the upper 20 cm of the soil horizon and very few are found below 40 cm of depth. 31 Nematode-trapping fungi have been found fossilized in amber dated at 100 million years old and was mentioned in the Cretaceous age.32 A. oligospora was described for the first time by Fresenius in 1852. Woronin reported that A. oligospora forms networks of hyphal slings or loops during 1870. Zopf 33 observe that a fungus trap a living animal. American mycologist, Drechsler34 published a monumental paper that established 11 new species. Duddington9 described predacious activity of many fungi against eelworm. Peterson and Katznelson,35 Garspard and Mankau,36 Persmark and Jansson37 observed that nematode-trapping fungi were more frequent in the rhizosphere. A. oligospora colonized in epidermal cells may serve the purpose of trapping newly hatched juveniles of plant-parasitic nematodes.

Structures of Nematode -Trapping Fungi

The trapping device of these fungi comprises the hyphal structure which is having an adhesive layer covering part or the entire surface.24 The sparse mycelia of these fungi when come into close contact with nematodes, it differentiates spontaneously into functional traps. The mycelial traps then penetrate nematode cuticle, kill and digest the nematodes’ contents.

Adhesive Hyphae / Branch

Adhesive hyphae /branch consist of one or more cells to infect nematodes. The adhesive column is a short and erect hyphae consisting of a few swollen cells.

Adhesive Knobs

The hypha having globose or subglobose cell either sessile or with an erect stalk produces adhesive knob. The knob can detach from the mycelia, travel along with the nematode and then penetrate nematode cuticle and infect the nematode. Usually infection involves one knob and several associated hyphal elements. Nematode cuticle are having several infection site. Adhesive knobs produce an infection peg and infection bulb. The infection bulb proliferates within the nematode body and thereafter digesting and assimilating the contents of nematode body. They break out through the nematode cuticle and produce external hyphal structure which resembles vegetative mycelium. The traps of Monacrosporium ellipsosporum are passive in action and nematode specific as well as stage specific.36 The adhesive knobs ( A. oligospora and A. dactyloides) develop directly through the germination of the conidia, without  a hyphal phase.38

Adhesive Network

The vegetative hypha forms an erect lateral branch and then curving to fuse with the parent hyphae. Appressorias are developed from the hypae and penetrate the entangled nematodes and formation of an infection bulb and infection hyphae takes place which digest the contents of nematode body.

Mechanical Structures

Constricting ring: The three ring cells are triggered to swell rapidly inwards as and when a nematode enters the ring and firmly loop the prey.An infection peg is produced by one of the three ring cells and a infection bulb develops after the infection peg has penetrated into the body cavity of nematodes.39 Infection bulb digests and absorbs the nematodes internal contents, Ring inflation occur due to increased vacuolation, osmotic mechanism and presence of membrane bound inclusion in traps which may contribute to matrix for plasma membrane expansion on inner face of a trap. In presence of mild heat, pressure or Ca2+, 12 cells of the ring are effective in formation of loop.

Nonconstricting rings: The lateral branches from the vegetative hyphae thicken and curve and then fuses to the supporting stalk to form a nonconstricting ring. If a nematode, during its movement, thrusts its head inside the rings, it gets wedged in its efforts to force its way through and is held in the process. During the struggle of the nematode the ring often breaks off at the point of weakness near the stalk apex. The process may be repeated until several rings are wedged around the host. Detached rings are viable, the prey is then penetrated and the contents are consumed. There is no sticky material and the nematode is held purely by friction.

Other mechanical structures with nematicidal activity which can damage the cuticle of the nematode by their sharp projections have been reported.

Table 1: Nematode trapping fungi and infected nematodes

Nematode –trapping structure Fungi Taxonomic position Nematode infected Reference
Adhesive hyphae Stylopage hadra

Cystopage lateralis

Zygomycota Rhabditis,

Cephalobus,

Acrobeles

Drechsler [14,34]
Adhesive branches Dactylella cionopaga

D.gephyropaga

D.tylopage

D.lobata

Arthrobotrys oligospora

/ Orbilia

Ascomycota Plant-parasitic nematodes Li et al.[23]

Niu & Zhang [40]

Singh et al.[41]

Monacrosporium cionopagum Ascomycota M.incognita Robinson & Jaffee, [42]

Satou et al.[43]

Adhesive knob Nematoctonus/Hohenbuehelia Basidiomycota Thorn & Barron [27]
Dactylellina/Orbilia Ascomycota Yang et al.[44]
D.haptotyla

Dactylella ellipsospora Monacrosporium haptotylum Monacrosporium ellipsosporum

 Dactylaria candida

D.brochopaga

D. scaphoides

Ascomycota Meloidogyne spp.

Pratylenchus penetrans

Aphelenchus avenae

Ahren et al.[45]

Timper & Brodie[46]

Ahren et al.[47]

Friman[48]

Liu et al.[49]

Dowsett&Reid[50]

A. oligospora

A. dactyloides

Ascomycota Nordbring-Hertz et al.[12]
Adhesive network A.oligospora

A.musiformis

Ascomycota Nordbring-Hertz et al. [12]
Dactylaria scaphoides Ascomycota Dowsett&Reid[50]
Constricting ring Drechslerella / Orbilia

Drechslerella stenobrocha

Ascomycota Higgins & Pramer, [51]

Dijksterhuis et al. [52]

Nordbring-Hertz et al.[12]

Liu et al.[53]

Dactylaria brochopaga

Dactylella bembicoides

Ascomycota Meloidogyne graminicola Singh et al.[54] Kumar & Singh [55]
Arthrobotrys conoides A.dactyloides

Monacrosporium ellipsosporum

Ascomycota Xiphinema index Gaspard & Mankau [56]
Non-constricting ring Dactylaria candida

D. lysipaga

Deuteromycetes Ditylenchus dipsaci, Globodera rostochiensis Galper et al. [57]

Liu et al.[49]

Dactylellina/Orbilia Ascomycota Yang et al.[44]
Spiny ball Coprinus comatus Basiodiomycota M.arenaria Luo et al. [28,58,59]
Canthocytes Stropharia rugosoannulata Basiodiomycota Bursaphelenchus xylophilus Luo et al. [58,59]

Endozoic or Endoparasitic Fungi

Endoparasitic fungi infect nematodes through special spores known as zoospores. The zoospores are swallowed by the nematode or adhere to their surface and the mycelia grow from spores within the nematodes (Table.2). Endoparasitic fungi are generally highly specific to nematodes, and are difficult to culture in artificial host in the absence of their host. Depending on the species, any nematode stages can be attacked. The conidia of Hirsutella rhossiliensis adhere to nematodes. After germination, fungal hyphae then penetrate the cuticle and utilize the internal contents for food. Before penetration, secretion of the toxin may immobilize the host. When the food source depleted; adhesive conidia emerge out of the cuticle.

Egg and Cyst Parasitic Fungi

These are usually saprotrophic soil fungi found in plant roots. Nematode eggs of sedentary endoparasite, viz. Globodera, Heterodera, Rotylenchulus, Tylenchulus, and Meloidogyne are more vulnerable to attack by these fungi than those of migratory nematodes. The appressoria or globose mucilaginous knobs are formed when the fungal hyphae contacted the eggs.60 During the early stage of infections, hyphae completely occupied the embryo in the egg and become vacuolated after the contents are consumed. Penetration is facilitated by extracellular enzymes such as chitinases and proteases.24 The fungus can colonize nematode reproductive structure and affect their reproductive capabilities. These fungi have been found to be more prevalent in the root rhizosphere.61,62 P. chlamydosporia and the toxin-producing P.djamor63 are present mostly as root colonizer. However the endoparasitic fungi H. rhossiliensis and N. pachysporus did not show root colonization.64-66

Parasites of Females/cyst

The white females of Heterodera spp. become infected after they rupture the root cortex and are exposed in soil. The infected females tend to lose turgor. The females donot turn brown and their entire content is replaced by zoosporangia in approximately 4 days at 130 C. In some of the white cysts where infection takes place after the commencement of egg laying, the fungus parasitized the eggs as well. In such cases, eggs with second stage larvae inside the eggshell are parasitized more than those eggs which are still in embryonic stage. The larvae, once invaded by the fungus, totally destroyed in 18-24 hrs. The total destruction of the young white females completed within 48-72 hrs. The spores are then spread in soil.

Hyphae of Glomus fasciculatum penetrated the female of Heterodera glycine cuticle and infected eggs shortly after it ruptured the root epidermis. Chlamydospores are also observed in G.fasciculatum within cysts.89

Parasites of Vermiform Nematodes

Members of this group having adhesive spores and attached to cuticle, mouth, excretory pore, anus, or sensory organs prior to their germination and infections of the nematodes. After the production of germ tube the nematode cuticle was penetrated and growth of hyphae proceeded. They have generally limited mycelial growth outside the host. The nematode remained alive until the hyphae reached the vital organs.

Table 2: Endoparasitic fungi and infected nematodes

Endoparasitic fungi Fungi Taxonomic position Nematode infected Reference
Adhesive conidia Haptocillium /Cordyceps (Drechmeria coniospora) Ascomycota Caenorhabditis elegans Jansson [67]

Quandt et al. [68] Lebrigand et al.[69]

Hirsutella rhossiliensis

Hirsutella minnesotensis

Ascomycota Heterodera spp. Jaffee & Zehr [70]

Chen et al. [71]

Chen & Liu[72]

Harposporium/Podocrella Ascomycota Yang  & Zhang[13]
Hyphoderma Basidiomycota Mycophagous nematode, Rotylenchulu,Trophonema Tzean &Liou[73]

Zhang et al. [74]

Trichothecium Ascomycota M.incognita Ciancio et al. [75]
Triposporina Ascomycota Zhang et al. [74]
Tridentaria Ascomycota Zhang et al. [74]
Zoophagus Zygomycota Zhang et al. [74]
Adhesive buds Myzocytium humicola Oomycota Rhabditis Barron & Percy[76]

Zhang et al. [74]

adhesive knob Nematoctonus/Hohenbuehelia

Nematoctonus concurrens

Basidiomycota Zhang et al. [74]
Myzocytiopsis Oomycota Jansson et al. [77]
Haptoglossa Oomycota Barron[78]

Nordbring-Hertz et al.[79]

Catenaria Chytridiomycota Zhang et al. [74]
Pochonia Ascomycota Zhang et al. [74]
Paecilomyces / Cordyceps Ascomycota Zhang et al. [74]
Nematophthora Oomycota Zhang et al. [74]
Meria(Drechmeria) Ascomycota Jansson et al. [77]
Egg and cyst parasitic fungi

 

Fusarium Ascomycota H.schachtii

 

Westphal [80] Westpha&Becker[81]
Cephalosporium Ascomycota Jansson et al. [82]
Verticillium chlamydosporium

(Pochonia chlamydosporia)

V.bulbillosporum

V.balanoides

P.rubescens

Ascomycota H.schachtii

M.arenaria

Siddiqui & Mahmood[83]

 

Durschner Pelz &Atkinson[84]

Mortierella nana Zygomycota Jansson et al. [82]
Paecilomyces lilacinus

(Purpureocillium lilacinum)

Ascomycota Meloidogyne spp

Radopholus similis,

Heterodera spp,

Globodera spp, Pratylenchus spp

Tranier et al.[85]
Acremonium  bacillosporum Ascomycota Stirling[86]
Dactylella oviparasitica Ascomycota Meloidogyne spp.,

Acrobeloides sp.,

Heterodera schachtii , Tylenchulus semipenetrans

Stirling[86]
Monacrosporium lysipagum

M.haptotylum

Ascomycota Ahren et al.[45]
Catenaria anguillulae Chytridiomycota M.graminicola Singh et al.[87]
Trichoderma harzianum

T. viride (T.asperelloides)

T. asperellum (T.asperelloides)

Ascomycota M.javanica Sharon et al. [88]
Nematophthora Oomycota   Siddiqui& Mahmood [83]
Parasites of females/cyst

 

C.auxillaris Chytridiomycota H.schachtii, H.avenae, H.cajani,

H.zeae

Zhang et al. [82]
C.vermicola Chytridiomycota H.avenae, H.cajani, H.zeae, H.graminis, H.mothi

H. sorghi

Zhang et al. [74]
Dactylella oviparasitica Ascomycota T.semipenetrans Nacobbus aberrans Zhang et al. [74]
Nematophthora gynophila Oomycota cyst nematodes Zhang et al. [74]
Glomus fasciculatum

G.microcarpum

G.mosseae

Glomeromycota Root-knot nematode Kantharaju et al.

[89]

Pochonia/Metacordyceps Ascomycota Morgan-Jones et al. [90, 91]

Freire & Bridge[92]

de Leij & Kerry[63]

V.chlamydosporum Ascomycota H.avenae Zhang et al. [74]
Chaetomium cochloides Exophiala pisciphilla

Fusarium oxysporum

F.solani

Phytophthora cinnamon Trichosporon beigeli

Pythium spp.

Ascomycota

 

 

 

Oomycetes

Basidiomycota

Oomycetes

H.glycines Stirling[86]
P.lilacinus M.incognita

T.semipenetrans

Nacobbus aberrans.

Tranier et al.[85]
Parasites of vermiform nematodes Catenaria sp. Chytridiomycetes Stirling[86]
Myzocytium humicola Oomycetes
Merisacrumn asterospernum Zygomycetes
Harposporium anguillulae Deuteromycetes
Nematoctonus sp. Basidiomycetes
H.arcuatum,

H.helicoides,

 Cephalosporium balanoides

Hyphomycetes
Meria coniospora Ascomycota Panagrellus redivivus,

Aphelenchoides fragariae , Ditylenchus destructor,

M.spp.

Jansson et al. [77]
H. arcuatum hyphomycetes Stirling[86]
Caternaria anguillulae Lagenidium caudatum

Aphanomyces sp.

Teptolegnia spp.

Chytridiomycetes Xiphinema rivesi X.americanum, Stirling[86]
uniflagellate zoospores Catenaria vermicola Chytridiomycetes H.avenae,

H.sorghi ,

H.cajani

Stirling[86]

Toxic Fungi

The toxin producing fungi belong to widely divergent orders and families (Table.3). They attack their prey by secreting inhibitory metabolites (diffusible toxins), without any physical contact between the fungus and nematode.60,93  After immobilization of nematodes, the hyphae penetrate the nematode cuticle. The culture filtrates of these fungi are having strong proteolytic and chitinolytic activities, low molecular weight metabolites and some non-volatile oil components 81 to cause mortality of larvae or inhibit egg hatching. Toxic diffusible metabolites of the fungus either cause some alteration of egg shell make-up leading to aborted embryonic development. These deformed eggs varied in size and shape and do not hatch.

Table 3: Toxin producing fungi and infected nematodes

Toxic metabolite Fungi Nematode infected Reference
Leucinostatins

Serine protease,

Chitinase

Purpureocillium lilacinum

Paecilomyces sp.

 

M.javanica,

M. incognita,

P. redivivus ,

Bursaphelenchus xylophilus

Park et.al.(143)

Liu et al(144)

 

T2 toxin, Moniliformin, Fusarenone, Neosolaniol, VerrucrinA, Fusarium solani M.javanica Ciancio(145)
Secalonic acid D, Oxalin Penicillium anatolicum

P.sp.

P.vermiculatum

P.oxalicum

P.chrysogenum

G.rostochiensis

H.avenae

M.spp.

G.rostochiensis,G.pallida

M.javanica

Steyn (146)
Trichocladinols Trichocladium spp.

 

G.pallida Goh & Hyde(147)
Trichothecenes,

Diterpenoids,

Sesquiterpenoids

Trichothecium roseum M.incognita Ciancio et al. (145)
Pleurotin, Dihydropleurotinic acid Pleurotus ostreatus

Coprinus comatus

Nematoctonus robustus, N.concurrens

Bursaphelenchus xylophilus Barron and Thorn 148)

Dong et al.(149)

Malformin C and Oxalic acid Aspergillus niger M.incognita Sang et al.(150)
 

Endochitinase,  Protease,

Phomalactone

Lecanicillium,

Pochonia(Verticillium chlamydosporium)

V. suchlasporium

 

V. epiphytum

 

M.incognita

 

Globodera pallida

 

M.javanica

Lopez-Llorea et al.(60)

 

Tikhonov et al. (113)

Yang et al.(24)

Moosavi et al.(151)

Macrocyclic lactone Streptomyces avermitillis

(Avermectins)

 

Ditylenchus dipsaci,

M.hapla

 

Omura &Shiomi (134)

 

Volatile organic compounds

(6-pentyl-α-pyrone)

T. harzianum,

T. viride,

T. atroviride,

T. asperellum,

Plant-parasitic nematodes Sarhy-Bagnon et al. (152)

Sharon et al. ( 88,135)

Suarez et al.(138)

Li et al.(139)

Casas-Flores &

Herrera-Estrella (153)

Lopez-Llorca et al.(60)

Hallmann et al. (4)

Moosavi and Zare (6)

Gliocladin C, 5-n-heneicosylresorcinol Clonostachys rosea

( Gliocladium roseum)

Bursaphelenchus xylophilus,

Globodera pallida

Suarez et al.( 138)

Li et al.(139)

Song et al.(154)

Linoleic acid

 

Arthrobotrys oligospora

A.conoides

A.dactyloides

Caenorhabditis elegans

 

 

Globodera pallida

Zhang et al.(155)
Drechslerella brochopaga

D. dactyloides

Stadler et al.(156)
Dactyllelina haptotyla Zhao et al.(157)
Verrucarin A , Roridin A Myrothecium verrucaria M.incognita Loan et al.(158)
Chaetoglobosin A Chaetomium  globosum M.incognia Yang et al.(159)

Mechanism of infection of nematode destroying fungi

Infection of nematodes starts with a recognition phase that is the chemotaxis of nematodes to fungal traps, or chemotaxis of zoospores to the nematode’s natural openings [94]. Capture hyphae and vegetative hyphae have several ultrastructural differences. Capture hyphae have thicker cell walls than vegetative hyphae and their cells contain electron dense bodies. After contact, an extracellular material, or adhesive, is formed. The adhesive is a specific carbohydrate binding protein (lectin) which is present on trap surfaces [95,96] . Some of the example are A.oligospora (N-acetylgalactose amine), Dactylaria candida (2-deoxyglucose), Meria coniospora (sialic acid), A.conoides (glucose/mannose), Monacrosporium eudermatum (I-sucrose) and M.rutgeriensis (2-deoxygluycose) [97,98] . The adhesive on the traps of A.oligospora changes from an amorphous to a fibrillar appearance after contact with a nematode and the adhesive on conidia of D. coniospora are always appears fibrillar [99]. The adhesive on the appressoria of P. chlamydosporia and P. rubescens are glycoprotein in nature with mannose/glucose moieties [64]. Involvement of a Gal-NAc-specific lectin of A. oligospora in nematode recognition has been suggested by Nordbring-Hertz and Mattiasson [100]. The endoparasitic fungus D. coniospora infects nematodes with its conidia which adhere to the chemosensory organs of Meloidogyne spp., but do not penetrate. The fungus was capable of reducing root galling in tomato in a biocontrol experiment [77], indicating the involvement of chemotactic interference [99]. Conidial adhesion of D. coniospora was suggested to involve sialic acid-like carbohydrate [101] .Monacrosporium ellipsosporum adhesive knobs showed host specificity .This host recognition results in reorganization of the adhesive surface polymer on the fungus and adhesion of the nematode to the fungus which triggers the growth of hyphal branches into the nematode to initiate its digestion. Once inside the body of the nematode, the fungus swells up to produce a globe-shaped vesicle, also named as mortiferous excrescence, infection bulb, post-infection bulb. From this bulb, hyphae proliferate in both directions and consume the host’s contents.

Predacious fungi grow and reproduce saprotrophically until come in contact with nematodes. The change induced in fungal structure is stimulated by a metabolic product of nematode known as nemin [102]. Nemin appears to contain several amino acids viz. valine, aspartic acid, glutamic acid, leucine, isolleucine, serine and arginine and specific peptides of low molecular weight [52].Peptides may be inducing changes in the lipid metabolism of the fungi which may lead to membrane structural changes associated with trap formation in Arthrobotrys oligospora [103]. PII is a serine protease purified from A.oligospora that could digest proteins present on the nematode cuticle [104]. PII belongs to the subtilisin family of serine proteases and has a molecular mass of 32 kDa. The expression of PII is increased by the presence of proteins, including nematode cuticles [105]. Another serine protease from A. oligospora (Aoz1), with a molecular mass of 38kDa showing 97% homology with PII was recently described [106]. Another serine protease (P32) of molecular mass of 32 kDa was purified and characterized from the egg parasite P. rubescens [107]. Ahman et al. [108] investigated that overexpression of the PII gene resulted in a higher virulence.  P. chlamydosporia produces an extracellular protease (VcP1) which is immunologically related to P32 [109,110]. VcP1-treated eggs were more infected than untreated eggs suggesting a role of the enzyme in eggshell penetration by egg-parasitic fungi. A chymotrypsin-like protease from conidia of the endoparasite D. coniospora [111] and a collagenase produced by the nematode-trapping Arthrobotrys tortor [112] has been detected. Several chitinolytic enzymes like 43 kDa endochitinase (CHI43)  of Pochonia rubescens and P. chlamydosporia have been suggested[113]. Recently, using mass spectrometry 26 cell-wall proteins were identified and included glycosyl hydrolases, oxidases, pectin lyases and proteases which are being upregulated in traps as compared to vegetative mycelium in A. oligospora [114]. Ascarosides, sugar ascarylose linked to a fatty-acid chain are constitutively secreted by nematodes, trigger trap formation in nematode-trapping fungi [115,116].

Trap formation is also influenced by cultural conditions and defined low nutrient medium (LNM) giving the most rapid and pronounced induction in A.oligospora and A.dactyloides. Trap formation by A.conoides was higher in rich nutrient medium of corn meal agar (CMA) than LNM [117].

The development of traps is a complex process involving cytoskeleton assembling, enhanced cell wall biosynthesis, increased glycerol synthesis and accumulation, as well as peroxisome biogenesis [118]. Recently, using expressed sequence tag (EST) techniques, it was detected that genes involved in formation of infection device and fungal morphogenesis were expressed during trap formation of Dactylellina haptotyla (syn. Monacrosporium haptotylum) [47].

The penetration of M.incognita females by Paecilomyces lilacinus (Purpureocillium lilacinum) is generally through the anal or vulval openings [119].They colonizes the gelatinous egg matrix of Meloidogyne and penetration of nematode eggs is completed through appressoria [11, 120]. Both mechanical and enzymatic activities may be involved in the penetration. Culture filtrates containing a peptidal antibiotic P-168 of P. lilacinum have been shown to be toxic to nematodes and other soil microorganisms [121-123]. The ultrastructural changes observed in egg shell are splitting of vitelline layer into 3 discrete membranes which appear unevenly thickened, the chitin layer become vacuolated and the lipid layer disappears. Similar disorganization of the larval cuticle occurs and larvae become necrotic. In heavily colonized larvae, the external cortical layer is contorted .These are due to the presence of  chitosanase [124].  P.lilacinus is a good root colonizers [125] and rhizosphere competitor, and has been tested widely and shown to suppress nematode population densities and increase plant yields [126].

Penetration of P. chlamydosporia to eggshells occurs through lateral branches of mycelium; penetration peg (appressoria) develops and leads to the disintegration of the vitelline layer , dissolution of the chitin and lipid layers of nematode cuticle [91,127-130]. Both proteases and chitinases are involved in  infection process. Proteases of nematode parasites have been characterized from V. suchlasporium [131] and P. chlamydosporia [129]. Studies of different isolates of P. chlamydosporia have also shown that they produce a range of different subtilisins [132]. There are reports of difference of virulence of isolates of V. chlamydosporium, collected from the same soil to root-knot population , even variations of virulence exist within root-knot populations [117]. P.rubescens starts with contact of the hyphae with the egg of root-knot nematode and formation of an appressorium. The appressorium of the fungus penetrates the nematode eggshell by means of both mechanical and enzymatic components. On the appressorium an extracellular material (ECM), or adhesive, is detected that can be labelled with the lectin Concanavalin A (Con A), indicating that it contains glucose/mannose residues. The ECM contains the protease P32 that can be immunologically detected using both fluorescent stains and colloidal gold. This proteolytic activity causes the degradation of eggshells. In pot experiments P. chlamydosporia increased plant growth, suggesting a growth promoting effect by P. chlamydosporia [133].

The uniflagellate zoospores of C. anguillulae become attracted to natural orifices (mouth or excretory pores) of the nematode. Upon contact with the nematode natural orifices, the zoospores show an ‘amoeboid movement’ before encystment takes place. During encystment a cell wall is formed covered by an adhesive. The encysted zoospore forms an infection peg which penetrates the nematode cuticle. The fungus digests the nematode contents and the zoospores are released which can infect new nematodes.

Some actinomycetes are known to produce compounds with nematicidal properties. Macrocyclic lactones designated Avermectins have been isolated from mycelia of Streptomyces avermitillis [134]. They are antagonists of GABA as opposed to the acetylcholinesterase inhibition by organophosphates and carbamates and their potential efficacy is greater than the current nematicides. Avermectins (B2a) have been reported to reduce oxygen uptake of larvae of M.javanica, M.arenaria and M.incognita under laboratory condition.

Trichoderma is a ubiquitous soil fungus and root colonizes.The highly branched conidiophores of Trichoderma produce conidia that can attach to different nematode stages. Fungal coiling and appressorium like structures are formed for penetration of the nematode cuticles or eggshells, Trichoderma harzianum and T. viride (T.asperelloides) colonizes eggs and juveniles of Meloidogyne spp. and the antagonistic or parasitic effect are brought about by glycolytic and chitinolytic enzymes and peptaibiotics[135- 137].Trichoderma harzianum are sources of serine proteases with nematicidal activity [138,139].Application of Trichoderma resulted in reduced nematode galling and improved plant growth and induces resistance to root-knot nematode [140,141].

Arthrobotrys dactyloides has been shown to produce a nematotoxin, the active ingredient being ammonia. Some of the nematicidal metabolites produced by Ascomycetes namely oligosporon, 4′,5′-dihydrooligosporon, talathermophilins A and B, phomalactone, aurovertins D and F, paeciloxazine, a pyridine carboxylic acid derivative, and leucinostatins has been detected. Blumenol A is one type of metabolite which acts as a nematode attractant [142].

Isolation, mass production, commercialization and field application

Westphal [80], Borneman and Becker [160] developed several techniques by which it is determined whether a soil includes antagonistic organisms against plant-parasitic nematodes or not. Baiting technique and sprinkle-plate method are some of the techniques to isolate fungi [161,162,163].For egg parasitic fungi, egg masses are to be isolated, subculture and identified. A PCR-based detection technique revealed many fungi that are closely related to nematode trapping fungi and eggs parasitic fungi [164]. For development of a potentential biocontrol agent the common strategy has been to mass-produce the fungi either on solid or liquid substrates followed by application.The nematode-trapping fungi are easy to grow in the laboratory [52, 165] while zoopagales cannot be cultured on artificial media[166]. It is possible to control the development of traps by modifying the growth condition and the medium composition. Growing A. oligospora in aerated liquid cultures in a low-nutrient media containing soya peptone supplied with small amounts of the amino acids phenylalanine and valine allows significant trap formation [167].Growing Monacrosporium haptotylum in this system makes the knobs detach from the mycelium due to the air bubbling from the bottom and the knobs can be separated from the mycelium by filtration [168]. Methods that produce the highest number of propagules are not essentially those that generate the most efficacious [169,170]. Mass culture should be done after testing their potentiality as biocontrol agent through in vitro and pot experiments. A promising candidate is the one that can produce numerous resistant spores or structures with an acceptable shelf-life and applicable with routine agricultural machinery [171].Fungal biocontrol agents that are unable to develop resting structures may be applied as vegetative cells, hyphae or conidia. These structures are more vulnerable and need more complex formulations [172]. The important factors in producing specific propagules include carbon source, osmotic potential, temperature and pH [173]. A proper formulation assists in delivering an optimal population density of biocontrol agent at the most appropriate site and time as well as improving the efficiency [172-175]. Some nematophagous fungi have been formulated as encapsulated pellets made from calcium alginate to aid in their dispersal in the field.  To deliver the infectious fungi to growers, potent infectious fungi must be commercialized [174]. Several research workers and entrepreneurs have tried to discover, develop and commercialize but in practice only a few bio products have successfully been introduced to the market (Table. 4).  However, for more development of the commercial product, thorough understanding of the complexicity of soil ecology (soil temperature, soil moisture, soil texture and structure, soil microflora) in agricultural fields is required. Quality control is an important component of all commercial products. The cost of registering a product which includes a variety of tests required proving the safety and efficacy of a product is also a significant concern. The application technology should be devised depending on biocontrol agent type, mode of action and cropping system, compatibility with existing farm practices and safety, besides low price [173,176]. Most bionematicides in the market are in the form of liquid or wettable powder formulations, which are implemented in furrow or through drip irrigation systems [175].  Kerry [177] suggested the application of organic manures in combination with nematophagous fungi and application of biocontrol agents with the planting material.

Table 4: Commercial products of Nematode destroying fungi

Commercial product Formulation Fungi Reference
BIOACT®WG Water-dispersible

granulate

Purpureocillium lilacinum

 

Davies and Spiegel (175)
BIOACT®WP Water-dispersible powder
PL Gold Wettable powder
PL 251 Water-dispersible

granulate

BIOCON Wettable powder
Shakti Paecil Wettable powder
Yorker Wettable powder Davies and Spiegel(175)
Miexianning
Pl Plus® Wettable powder
Melocon® Water-dispersible

granulate

Davies and Spiegel (175)
Green Nemagon Liquid formulation Moosavi &Askary (178)
Bio-Nematon Kabaluk et al.(179)
BIOSTAT(r) Tranier et al.(85)
KlamiC® Granulate Pochonia

chlamydosporia

Davies & Spiegel (175)
PcMR-1 strain Liquid
Xianchongbike Liquid
Romulus Wettable powder Trichoderma harzianum

 

 

T. viride

T. lignorum

Moosavi &Askary (178)
Ecosom-TH Wettable powder,

liquid, lyophilized

Commander Fungicide
Trichobiol Wettable powder
Trifesol Wettable powder
Mycobac
Trianum(r) T. harzianum Tranier et al.(85)
Trifender T.asperellum Biro-Stingli &Toth (180)
DiTera® Dry flowable Myrothecium verrucaria Warrior et al.(181)

Lamovsek et al.(182)

Royal 300 fresh mycelium on organic

substrates

 

Arthrobotrys robusta Cayrol et al.( 183)
Royal 350 Arthrobotrys

irregularis

Cayrol ( 184, 185)
Alginate-based formulations

 

Monacrosporium ellipsosporum Jaffee & Muldoon(186)
Monacrosporium cionopagum Jaffee & Muldoon(186)
encapsulation

in alginate

Dactylella candida Stirling & Mani(187)
Arthrobotrys

dactyloides

Stirling & Mani(187)
granular H. rhossiliensis Lackey et al.(188)
microencapsulation Patel et al.(189)
REM G(r) Granulate consortium Tranier et al.(85)
Abamectin microcapsule M.incognita Beixing et al.(190)

 

  1. Conclusion

Better knowledge about the mode of action od nematode destroying fungi or microbe-nematode interactions is a prerequisite for the development of biocontrol agent to management of plant-parasitic nematodes [130, 191]. Furthermore, knowledge about the genes that regulated during pathogenicity and survival of the introduced fungus could help for the development of new control agents [175]. Besides health and safety, some of the aspects viz., identification of the nematode species to be controlled ,soil receptivity to selected spores of these fungi, demand for the product, potential market size and on existing competing products, must be considered before a nematode destroying fungus can be registered as an agricultural biocontrol agent, [172].

For a sustainable nematode management we have to intensify the search for environmentally beneficial and cost-efficient alternatives. Nematode destroying fungi will provide a promising bionematicides, and in turn improve plant growth. Using as a component in integrated pest management we can increase crop yields and ultimately help in production of more food to feed the growing population.

References

  1. Nicol, J.M., Turner, S.J., Coyne, D.L., den Nijs, L., Hockland, S.,Tahna Maafi, Z. :Current nematode threats to world agriculture. In: Genomics and Molecular Genetics of Plant-Nematode Interactions (Jones J, Gheysen G , Fenoll C, eds). Dordrecht, the Netherlands: Springer Science and Business Media, 2011; pp 21-43.
  2. Chitwood, N. Nematicides. In: Encyclopedia of agrochemicals. (Plimmer JR, Ragsdale NR, Gammon D, eds) New York: John Wiley and Sons,2003; pp 1104-1115.
  3. Walia,R.K., Kranti, K.V.V.S., Kumar,V. 2018.Consolidated Biennial Report (2015-17) of All India Coordinated Research Project on Nematodes in Cropping System, ICAR- Indian Agri. Res. Inst. New-Delhi, pp 2-3.
  4. Hallmann, J., Davies, KG., Sikora, RA. Biological control using microbial pathogens, endophytes and antagonists. In: Root-Knot Nematodes. (Perry, RN, Moens, M. , Starr, JL, eds.). CAB International, Wallingford, UK:2009; pp 380-411.
  5. Timper, P. Utilization of biological control for managing plant-parasitic nematodes. In: Biological Control of Plant-Parasitic Nematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms. Progress in Biological Control (Davies KG and Spiegel Y, eds.). Dordrecht, the Netherlands: Springer Science and Business Media, 2011; pp 34-45.
  6. Moosavi, M.R., Zare, R.: Fungi as biological control agents of plant-parasitic nematodes. In: Plant Defence: Biological Control (Merillon JM, Ramawat, KG, eds), Dordrecht: Springer Science and Business Media, 2012; pp 67-107.
  7. Pendse, M.A., Karwande, P.P., Limaye, M.N. Past, present and future of nematophagous fungi as bioagent to control plant parasitic nematodes. J.Plant Prot.Sci., 2013;5(1): 1-9.
  8. Linford, M.B. Stimulated activity of natural enemies of nematodes. Science, 1937; 85(2196): 123-124.
  9. Duddington, C.L. Predaceous fungi and the control of eelworms. In: Viewpoints in Biology, Vol. 1. (Carthy JD, Duddington CL, eds), Butterworths, London: 1962; pp 151-200.
  10. Yu, Z.F., Mo, M.H., Zhang, Y., Zhang, K.Q.: Taxonomy of nematode-trapping fungi from Orbiliaceae, Ascomycota. In: Nematode-trapping fungi (Zhang KQ, Hyde KD, eds). Dordrecht: Springer, 2014; pp 41-209.
  11. Jatala, P. Biological control of plant-parasitic nematodes. Annu.Rev.Phytopathol. 1986; 24(1): 453-489.
  12. Nordbring-Hertz, B., Jansson, H.B., Tunlid, A. Nematophagous Fungi. In: Encyclopedia of Life Sciences. (Nordbring-Hertz B, Jansson HB, Tunlid, A.eds). Chichester: John Wiley & Sons Ltd., 2006; pp1-11.
  13. Yang, J., Zhang, K.Q. Biological control of plant-parasitic nematodes by nematophagous fungi. In: Nematode-trapping fungi. Fungal diversity Research Series 23(Zhang KQ, Hyde KD, eds.). Dordrecht: Springer, 2014; pp 231-262.
  14. Drechsler,C. A new species of Stylopage preying on nematodes. Mycologia., 1937; 28(3):241-246.
  15. Glockling,SL., Dick,MW. A new species of Harposporium infecting Rhabditis nematodes with microspores. Mycol.Res, 1994; 98(8):854-856.
  16. Liu, X.Z., Zhang, K.Q. Nematode-trapping species of Monacrosporium with the special reference to two new species. Mycol. Res. 1994; 98: 862-867.
  17. Liu, X.F., Zhang, K.Q. Dactylella shizishanna sp. nov., from Shizu Mountian, China. Fungal Divers., 2003; 14: 103-107.
  18. Zhang, D.,Yang, Y.,Castelbury, L.A., Cerniglia, C.E. A method for large scale isolation of high transformation efficiency genomic DNA. FEMS Microbiol.Lett., 1996;145(2):261-265.
  19. Rubner,A. Revision of predacious hyphomycetes in the DactylellaMonacrosporium complex. Stud Mycol., 1996; 39:1-134.
  20. Hagedorn, G., Scholler, M. Reevaluation of predatory orbiliaceous fungi. I. Phylogenetic analysis using rDNA sequence data. Sydowia., 1999; 51(1): 27-48.
  21. Scholler, M., Hagedorn, G., Rubner, A. A re evaluation of predatory orbiliaceous fungi. II. Anew generic concept. Sydowia, 1999; 51(1): 89-113.
  22. Li, TF., Zhang, KQ., Liu, XZ.(eds): Taxonomy of Nematophagous Fungi. Beijing,China:Chinese Scientific and Technological Publications,2000; pp1-383.
  23. Li, Y; Hyde, KD; Jeewon, R; Cai, L; Vijaykrishna , D; Zhang, K.. Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia., 2005; 97(5):1034-1046.
  24. Yang, Y.,Yang, E., An, Z., Liu, X. Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences., Proc. Natl. Acad. Sci. USA ,2007;104, 8379-8384.
  25. Chaverri, P., Samuels, G.J. , Hodge, K.T. The genus Podocrella and its nematode-killing anamorph Harposporium. Mycologia., 2005;97(2): 435-443.
  26. Zare, R., Gams, W., Evans, H. C. A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia, 2001; 73: 51-86.
  27. Thorn, R. G., Barron, G. L. Nematoctonus and the Tribe resupinateae in Ontario, Canada. Mycotaxon, 1986;25(2): 321-453.
  28. Luo, H., Mo, M., Huang, X., Li, X. , Zhang, K. Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematodes. Mycologia, 2004; 96(6): 1218-1225.
  29. Barron,GL(ed): The Nematode-Destroying Fungi. Topics in Microbiology No.1.Guelph, Ontario, Canada: Canadian Biological Publications Ltd., 1977; pp144.
  30. Barron, G.L. Lignolytic and cellulolytic fungi as predators and parasites. In: The Fungal Community, Its Organization and Role in the Ecosystems (Carroll GC and Wicklow DT, eds). NewYork: Marcel Dekker, 1992; pp 311-326.
  31. Persmark, L., Banck, A., Jansson, H.B. Population dynamics of nematophagous fungi and nematodes in an arable soil: vertical and seasonal fluctuations. Soil Biol.Biochem.,1996; 28:1005-1014.
  32. Schmidt, A.R., Dorfelt, H., Perrichot, V. Carnivorous fungi from Cretaceous amber Science,2007; 318(5857):1743.
  33. Zopf .W.Zur Kenntniss der infections Krankheiten niederer Thiere and Pflanzen. Nova Acta Leop.Acad., 1888; 52:314-376.
  1. Drechsler, C. Four Phycomycetes destructive to nematodes and rhizopods. Mycologia., 1941; 33:248-269.
  2. Peterson, E.A., Katznelson, H. Studies on the relationships between nematodes and other soil microorganisms. IV. Incidence of nematode-trapping fungi in the vicinity of plant roots. Can.J.Microbiol.,1965; 11(3): 491-495.
  3. Gaspard,JT., Mankau,R. Density dependence and host specificity of the nematode-trapping fungus Monacrosporium ellipsosporum. Revue Nematol., 1987; 10(2): 241-246.
  4. Persmark, L. ,Jansson, H.B. Nematophagous fungi in the rhizosphere of agricultural crops. FEMS Microbiology Ecology, 1997; 22(4): 303-312.
  5. Nordbring-Hertz, B. Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora – an extensive plasticity of infection structures. Mycologist, 2004; 18:125-133.
  6. Liu, K., Tian, J., Xiang, M., Liu, X. How carnivorous fungi use three celled constricting rings to trap nematodes. Protein Cell. 2012; 3(5): 325-328.
  7. Niu, X., Zhang, K. Arthrobotrys oligospora: A model organism for understanding the interaction between fungi and nematodes. Mycology, 2011;2(2): 59-78.
  8. Singh, R.K., Trivedi, D.K. ,Srivastava, A.: Role of nematode-trapping fungi for crop improvement under adverse conditions. In: Crop Improvement Under Adverse Conditions (Tuteja N and Gill SS, eds). New York: Springer Science and Business Media, 2013; pp 271-283.
  9. Robinson, A.F., Jaffee, B.A.Repulsion of Meloidogyne incognitaby alginate pellets containing hyphae of Monacrosporium cionopagumM. ellipsosporum, or Hirsutella rhossiliensis .J Nematol., 1996; 28(2): 133-147.
  10. Satou,T.,Kaneko, K., Li, W., Koike, K.The toxin produced by pleurotus ostreatus reduces the head size of nematodes. Biol Pharm Bull., 2008; 31(4):574-6.
  11. Yang, E., Xu, L., Yang, Y.,Zhang, X., Xiang, M., Wang, C. An, Z. Liu, X. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc. Natl Acad Sci USA ,2012;109, 10960-10965.
  12. Ahren, D., Ursing, B.M., Tunlid, A. Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiol. Lett. ,1998; 158(2): 179-184.
  13. Timper, P., Brodie, B.B. Infection of Pratylenchus penetrans by nematode-pathogenic fungi. J Nematol., 1993;25(2): 297-302.
  14. Ahren,D., Tholander, M., Fekete, C., Rajashekar, B., Friman, E., Johansson, T., Tunlid, A. Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology, 2005; 151(3):789-803.
  15. Friman, E. Uv inhibition of the nematode infection process in Arthrobotrys oligospora and Dactylaria candida. J. Gen. Microbiol .1993; 139:2841-2847.
  16. Liu, X., Xiang, M., Che, Y. The living strategy of nematophagous fungi. Mycoscience .2009; 50(1): 20-25.
  17. Dowsett, J. A., Reid, J. Observations on the trapping of nematodes by Dactylaria Scaphoidesusing optical, transmission and scanning-electron-microscopic techniques.Mycologia .,1979; 71:379-391.
  18. Higgins, M.L., Pramer, D. Fungal morphogenesis: Ring formation and closure by Arthrobotrys dactyloides. Science .1967;155:345-346.
  19. Dijksterhuis, J., Veenhuis, M., Harder, W., Nordbring-Hertz, B. Nematophagous fungi: physiological aspects and structure-function relationships. Adv. Microb. Physiol., 1994; 36:111-143.
  20. Liu, K., Zhang, W., Lai, Y., Xiang, M., Wang, X., Zhang, X., Xiang, M., Liu, X. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genom. 2014; 15: 452-457.
  21. Singh, K.P., Jaiswa, R.K.,Kumar,N.,Kumar, D.Nematophagous fungi associated with root galls of rice caused by Meloidogyne graminicolaand its control by Arthrobotrys dactyloidesand Dactylaria brochopaga. J.Phytopatho. 2007; 155(4):193-197.
  22. Kumar, N., Singh, KP. Effect of mass culture and spore suspension of Dactylaria brochopagaon growth of eggplant and population of the root-knot nematode, Meloidogyne incognitaIndian J. Sci. Res.,2010; 1(2):9-14.
  23. Gaspard, JT., Mankau, R. Nematophagous fungi associated with Tylenchulus semipenetrans and the citrus rhizosphere. Nematologica, 1986; 32(3): 359-363.
  24. Galper, S., Eden, LM., Stirling, GR., Smith, LJ. Simple screening methods for assessing the predacious activity of nematode-trapping fungi. Nematologica., 1995;41(1): 130-140.
  25. Luo, H., Li, X., Li, G., Pa, Y., Zhang, K. Acanthocytes of Stropharia rugosoannulata function as a nematode-attacking device. Appl. Environ. Microbiol., 2006; 72(4):2982-2987.
  26. Luo, H., Liu, Y., Fang, L. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes.Appl. Environ. Microbiol., 2007;73:3916-3923.
  27. Lopez Llorca, L.V., Macia Vicente, J.G., Jansson, H.B. Mode of action and interactions of nematophagous fungi. In: Integrated management and biocontrol of vegetable and grain crops nematodes (A. Ciancio, K.G. Mukerji, ed.), Springer, Dordrecht, The Netherlands: 2008 ;pp 51-76.
  28. Bourne, J.M., Kerry, B.R., De Leij, F.A.A.M. The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Sci.Techn.1996; 6(4): 539-548.
  29. Kerry, B.R. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 2000;38: 423-441.
  30. De Leij, F.A.A.M., Kerry, B.R. The nematophagous fungus Verticillium chlamydosporium as a potential biocontrol agent for Meloidogyne arenaria. Revue Nematol .,1991;14(1):157-164.
  31. Lopez-Llorca, L. V., Olivares-Bernabeu, C., Salinas, J., Jansson, H. B., Kolattukudy, P. E. Pre- penetration events in fungal parasitism of nematode eggs. Mycol. Res., 2002; 106(4): 499-506.
  32. Bordallo, J.J., Lopez-Llorca, L.V., Jansson, H.B., Salinas, J., Persmark, L., Asensio, L. Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytol.,2002; 154(2): 491-499.
  33. Lopez-Llorca, L.V., Jansson, H.B., Macia Vicente, J.G., Salinas, J. Nematophagous fungi as root endophytes. In: Soil Biology, Volume 9. Microbial Root Endophytes (Schulz B, Boyle C, Sieber T, eds), Berlin Heidelberg: Springer-Verlag, 2006; pp 191-206.
  34. Jansson, HB. Adhesion to nematodes of conidia from the nematophagous fungus Drechmeria coniospora. J Gen Microbiol. 1993;139:1899-1906.
  35. Quandt, C.A., Kepler, R.M., Gams, W., Evans, H.C., Hughes, D., Humber, R., Hywel-Jones, N., Li, Z., Luangsa-Ard, J.J., Rehner, S.A., Sato, H., Shrestha, B., Sung, G.H., Yao, Y.J., Zare, R., Spatafora, J.W. Phylogenetic-based nomenclatural proposals for  Ophiocordycipitaceae (Hypocreales) with new combinations in TolypocladiumIMA Fungus., 2014; 5(1):121-134.
  36. Lebrigand, K.,He, L.D.,Thakur, N., Arguel, M.J.,Polanowska, J., Henrissat, B.,Record, E.,Magdelenat, G., Barbe, V., Raffaele, S., Barbry, P., Ewbank, J.J.. Comparative Genomic Analysis of Drechmeria coniosporaReveals Core and Specific Genetic Requirements for Fungal Endoparasitism of Nematodes. 2016; PLoS Genet 12(5): e1006017. https: //doi. Org /10. 1371 /journal.pgen.1006017.
  37. Jaffee, BA.,Zehr, EI. Parasitism of the Nematode Criconemella xenoplax by the Fungus Hirsutella rhossiliensis. Phytopathology .1982; 72(10): 1378-1381.
  38. Chen, SY.,Liu, XV., Chen, FJ. Hirsutella minnesotensis sp nov., a new pathogen of the soybean cyst nematode. Mycologia., 2000; 92(5): 819-824.
  39. Chen, S., X. Liu.. Control of the soybean cyst nematode by the fungi Hirsutella rhossiliensis and Hirsutella minnesotensis in green house studies. Biol. Control, 2005; 32(2): 208-219.
  40. Tzean,S.S.,Liou,J.Y.Nematophagous resupinate basidiomycetous fungi. Ecology and Epidemiology., 1993;83(10):1015-1020.
  41. Zhang, Y., Li, G.H., Zhang, K.Q. A review on the research of nematophagous fungal species. Mycosystema, 2011;30:836-845.
  42. Ciancio, A., Lorgrieco, A., Lamberti, F., Bottalico, A. Nematicidal effects of some Fusarium toxins. Nematol. Medit. 1988; 16: 137-138.
  43. Barron,G.L., Percy, J.G. Nematophagous fungi: a new Myzocytium. Can.J.Bot., 1975; 53:1306-1309.
  44. Jansson, HB., Jeyaprakash, A., Zuckerman, BM. Control of root knot nematodes on tomato by the endoparasitic fungus Meria coniospora. J.Nematol..1985; 17(3):327-330.
  45. Barron, C.C. A new predatory hyphomycetes capturing copepods. Can.J.Bot. 1989; 68(3): 691-696.
  46. Davidson,J.G.N., Barron,G.L. Nematophagous fungi: Haptoglossa. Can.J. Bot.2011;51(7):1317-1323.
  47. Westphal, A. Detection and description of soils with specific nematode suppressiveness. J.Nematol., 2005; 37(1): 121-130.
  48. Westphal, A., Becker,J.O. Components of soil suppressiveness against Heterodera Schachtii. Soil Biol.Biochem.2011;33:9-16.
  49. Jansson, HB., Tunlid, A., Nordbring-Hertz, B. Biological control: Nematode. In: Fungal Biotechnology (Anke T, ed). Chapman and Hall: Weinheim, 1997; pp 38-50.
  50. Siddiqui, Z.A. Mahmood, I. Biological control of plant parasitic nematodes by fungi: a review. Bioresour Technol., 1996; 58:229-239.
  51. Durschner-Pelz, VV., Atkinson, HJ. Recognition of Ditylenchus and other nematodes by spores of the endoparasitic fungus Verticillium balanoides. J.Invertebr. Pathol.,1988; 51: 97-106.
  52. Tranier, M.S., Pognant-Gros, J.,Quiroz, R. DeC ,Gonzalez, C.A.N, Mateille, T., Roussos, S. Commercial biological control agents targeted against plant-parasitic root-knot nematodes. Braz. arch. biol. technol.  2014; vol. 57 no. 6 Curitiba Nov./Dec.
  53. Stirling, G.R. Nematophagous fungi and Oomycetes. In: Biological control of plant parasitic nematodes: Soil ecosystem management in sustainable agriculture. Wallingford, UK: CABI, 2014; pp101-152.
  54. Singh, K.P., Jaiswal, R.K., Kumar, N. Catenaria anguillulaeSorokin: a natural biocontrol agent of Meloidogyne graminicolacausing root knot disease of rice (Oryza sativa L.) .World J Microbiol Biotechnol., 2007; 23:291-294.
  55. Sharon, E., Chet, I., Viterbo, A., Bar-Eyal, M., Nagan, H., Samuels, G.J. , Spiegel, Y. Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur.J.Plant Pathol.,2007;118: 247-258.
  56. Kantharaju, V., Krishnappa, K., Ravichandra N.G., Karuna. K. Management of Root-Knot Nematode, Meloidogyne incognita on Tomato by using Indigenous Isolates of AM Fungus, Glomus fasciculatum. Indian J.Nematol., 2005; 35(1):32-36.
  57. Morgan-Jones, G., Godo, G., Rodriguez-Kabana, R. Verticillium chlamydosporium fungal parasite of Meloidogyne arenaria females. Nematropica, 1982; 11(2): 115-120.
  58. Morgan-Jones, G., White, J.F.,Rodriguez-Kabana, R. Phytonematode pathology: Ultrastructural study. I. Parasitism of Meloidogyne arenaria eggs by Verticillium chlamydosporium. Nematropica ,1983; 13(2): 245-260.
  59. Freire, FCO., Bridge, J. Parasitism of eggs, females and juveniles of Meloidogyne incognita by Paecilomyces lilacinus and Verticillium chlamydosporium. Fitopatol.Bras.,1985; 10: 577-596.
  60. Liu, X.Z.,Li, S.: Fungal secondary metabolites in biological control of crop pests. In: Handbook of Industrial Mycology (An Z, ed). New York, NY, USA:Marcel Dekker Inc, 2004;pp 723-747.
  61. Jansson, HB., Thiman, LA. preliminary study of chemotaxis of zoospores of the nematode parasitic fungus Catenaria anguillulae. Mycologia. 1992; 84: 109-112.
  62. Tunlid, A., Nivens, D. E., Jansson, H. B., White, D. C. Infrared monitoring of the adhesion of Catenaria anguillulae zoospores to solid surfaces. Experimental Mycology, 1991;15: 206-214.
  63. Tunlid, A., Johansson, T., Nordbring-Hertz, B. Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. J.Gen. Microbiol.1991; 137(6): 1231-1240.
  64. Zuckerman, B. M., Jansson, H.B. Nematode chemotaxis and mechanisms of host/prey recognition. Ann.Rev.Phytopathol.,1984; 22:95-113.
  65. Jansson, HB. Receptors and recognition in nematodes. In: Vistas on Nematology (Veech J ,Dickson D, eds ). Society of Nematologists: 1987; pp153-158.
  66. Jansson, HB., Nordbring-Hertz, B. The endoparasitic fungus Meria coniospora infects nematodes specifically at the chemosensory organs. J.Gen.Microbiol.,1983; 129:1121-1126.
  67. Nordbring-Hertz, B., Mattiasson, B. Action of a nematode-trapping fungus shows lectin mediated host-microorganism interaction. Nature, 1979; 281: 477-479.
  68. Jansson, HB., Nordbring-Hertz, B. Infection events in the fungus-nematode system. In: Diseases of Nematodes, Volume 2. (Poinar GO and Jansson HB, eds). Boca Raton: CRC Press. 1988 ; pp 59-72.
  69. Pramer, D., Stoll, N.R. Nemin-Morphogenic substance causing trap formation by predaceous fungi. Science ,1959;129(3354):966-967.
  70. Nordbring-Hertz, B. Peptide-induced morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. Physiol. Plant.,1973; 29:223-233.
  71. Tunlid, A., Rosen, S., Ek, B., Rask, L. Purification and characterization of an extracellularserine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology., 1994; 140(7):1687-1695.
  72. Ahman, J.B., Ek, B., Rask, L., Tunlid, A. Sequence analysis and regulation of a gene encoding a cuticle degrading serine protease from the nematophagous fungus Arthrobotrys oligospora. Microbiology, 1996; 142: 1605-1616.
  73. Zhao, M., Mo, M., Zhang, Z. Characterization of a serine protease and its full-length cDNA from the nematode-trapping fungus Arthrobotrys oligospora. Mycologia, 2004; 96(1):16-22.
  74. Lopez-Llorca, L. V. Purification and properties of extracellular proteses produced by the nematophagous fungus Verticillium suchlasporium. Can.J. Microbiol.1990; 36: 530-537.
  75. Ahman, J.B., Johansson, T., Olsson, M., Punt, P.J., Van, Den., Hondel, C., Tunlid, A. Improving the pathogenicity of a nematode trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl. Environ.  Microbiol., 2002; 68:3408-3415.
  76. Segers, R., Butt, T. M., Kerry, B. R. ,Peberdy, F. The nematophagous fungus Verticillium chlamydosporium Goddard produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 1994; 140: 2715-2723.
  77. Segers, R., Butt, T. M., Keen, J. N., Kerry, B. R. , Peberdy, J. F. The subtilisins of the invertebrate mycopathogens Verticillium chlamydosporium and Metarhizium anisopliae are serologically and functionally related. FEMS Microbiology Letters, 1995;126(3): 227-232.
  78. Jansson, HB., Friman, E. Infection-related surface proteins on conidia of the nematophagous fungus Drechmeria coniospora. Mycol. Res.1999; 103(2): 249-256.
  79. Tosi, S., Annovazzi, L., Tosi, I., Iadarola, P. Caretta, G. Collagenase production in an Antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia, 2001;153, 157-162.

113.Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J. , Jansson, H. B. Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V.suchlasporium. Fungal Genet. Biol.,2002;35(1): 67-78.

  1. Liang, L., Wu, H., Liu, Z., Shen, R., Gao, H., Yang, J., Zhang, K. Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes. Appl. Microbiol. Biotechnol. 2013; 97(19):8683-8692.
  2. Hsueh, YP, Mahanti, P., Schroeder, FC., Sternberg, PW. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr .Biol .2013; 23(1):83-86.
  3. von Reuss, S.H., Bose, N., Srinivasan, J., Yim, J.J., Judkins, J.C., Sternberg, P.W., Schroeder, F.C. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J Am Chem Soc., 2012; 134(3):1817-1824.
  4. Kerry, BR. Exploitation of the nematophagous fungus Verticillium chlamydosporium Goddard for the biological control of root-knot nematodes (Meloidogyne spp.). In: Fungi as Biocontrol Agents: Progress, Problems and Potential (Butt TM, Jackson C, Magan N, eds), Wallingford, UK: CABI Publishing, 2001; pp 155-167.
  5. Yang, J.K., Wang, L., Ji, X.L., Feng, Y., Li, X.M., Zou, C.G., Xu, J.P., Ren, Y., Mi, Q.L., Wu, J.L., Liu, S.Q., Liu,Y., Huang, X.W., Wang, H.Y., Niu, X.M., Li, J., Liang, L.M., Luo, Y.L., Ji, K.F., Zhou, W., Yu, Z.F., Li, G.H,,Liu, Y.J., Li, L., Qiao, M., Feng, L., Zhang, K.Q. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog, 2011;7:e1002179.
  6. Luangsa-Ard, J., Houbraken, J., Van Doorn, T., Hong, S.B., Borman, A.M., Hywel-Jones, N.L., Samson, R.A. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol Lett., 2011; 321(2):141-149.
  7. Holland, RJ., Williams, KL., Khan, A. Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1999; 1:131-139.
  8. Isogai, A., Suzuki, A., Higashikawa, S., Kuyama, S., Tamura, S. Structure of a peptidal antibiotic p168 produced by Paecilomyces lilacinus (Thom) Samson. Agric. Biol. Chem.1980; 44:3033-3035.
  9. Cayrol, J.C., Djian, C., Pijarowski, L. Study of the nematicidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Revue Nematol.,1989; 12(4): 331-336.
  10. Khan, MR., Goswami, BK. Effect of culture filtrates of Paecilomyces lilacinus isolates on hatching of Meloidogyne incognita eggs. Annals of Plant Protection Sciences .2000; 8(1): 62-65.
  11. Chen, Y. Y., Cheng, C. Y., Huang, T. L. , Li, Y. K. Chitosanase from Paecilomyces lilacinus with binding affinity for specific chitooligosaccharides. Biotechnol. Appl. Biochem. , 2005; 41(2): 145-150.
  12. Cabanillas, E., Barker, K.R. , Daykin, M.E. Histology of the interactions of Paecilomyces lilacinus with Meloidogyne incognita on tomato. J.Nematol.,1988; 20(3): 362-365.
  13. Noe, J.P., Sasser, J.N. Evaluation of Paecilomyces lilacinus as an agent for reducing yield losses due to Meloidogyne incognita. Biocontrol ,1995;1(3): 57-67.
  14. Lopez-Llorca, L.V., Duncan, G.H. A study of fungal endoparasitism of the cereal cyst nematode (Heterodera avenae) by scanning electron microscopy. Can.J.Microbiol.,1988; 34(5): 613-619.
  15. Lopez-Llorca, L.V., Claugher, D. Appressoria of the nematophagous fungus Verticillium chlamydosporium. Micron Microscoc Acta, 1990; 21: 25-130.
  16. Segers, R., Butt, T.M., Kerry, B.R. , Beckett, A. , Peberdy, J.F. The role of the proteinase VCP1 produced by the nematophagous Verticillium chlamydosporium in the infection process of nematode eggs. Mycol.Res.,1996;100(4): 421-428.
  17. Morton, C.O., Hirsch, P.R. Kerry, B.R. Infection of plant-parasitic nematodes by nematophagous fungi-a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology ,2004; 6(2): 161-170.
  18. Lopez-Llorca, L.V., Robertson, W.M. Immuno cytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium. Experimental Mycology, 1992;16(4): 261-267.
  19. Segers, R., Butt, T.M., Carder, J.H., Keen, J.N., Kerry, B.R. , Peberdy, J.F.  The subtilisins of fungal pathogens of insects, nematodes and plants: distribution and variation. Mycological Research, 1998; 103(4): 395-402.
  20. Monfort, E., Lopez-Llorca, L.V., Jansson, HB., Salinas, J., Park, J O., Sivasithamparam, K. Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biol. Biochem. 2005;37: 1229-1235.
  21. Omura, S., Shiomi, K. Discovery, chemistry, and chemical biology of microbial products. Pure Appl. Chem .,2007;79:581-591.
  22. Sharon, E., Bar-Eyal, M., Chet, I. ,Herrera-Estrella, A. ,Kleifeld, O., Spiegel, Y. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology ,2001; 91(7): 687-693.
  23. Spiegel, Y., Sharon, E., Chet, I. Mechanisms and improved biocontrol of the root-knot nematodes by Trichoderma spp. Acta Horticulturae ,2005;698:225-228.
  24. Sharon, E., Chet, I., Spiegel, Y. Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro. Eur. J. Plant Pathol., 2009; 123(3): 291-299.
  25. Suarez, B., Rey, M., Castillo, P., Monte, E., Llobell, A. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl.Microbiol.Biotechnol.,2004; 65(1): 46-55.
  26. Li, J., Yang, J., Huang, X. , Zhang, K. Q. Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochem., 2006; 41: 925-929.
  27. Freitas, LG., Ferraz, S., Muchovej, JJ. Effectiveness of different isolates of Paecilomyces lilacinus and an isolate of Cylindorcarpon destructans on the control of Meloidogyne javanica. Nematropica, 1995; 25(2): 109-115.
  28. Spiegel, Y., Chet, I. Evaluation of Trichoderma spp. as a biocontrol agent against soil borne fungi and plant- parasitic nematodes in Israel. Integrated Pest Manag. Rev., 1998;3(3):169-175.
  29. Thomas, D., Andreas, V.Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl. Microbiol.Biotechnol. 2016; 100(9): 3813-3824.
  30. Park, J. O., Hargreaves, J. R. , McConville, E. J. , Stirling G.R. , Ghisalberti, E. L. Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Lett.Appl.Microbiol., 2004;38(4): 271-276.
  31. Liu, YJ., Zhai, CY., Liu, Y., Zhang, KQ. Nematicidal activity of Paecilomyces spp. and isolation of a novel active compound. J. Microbiol. 2009; 47:248-252.
  32. Ciancio, A. Observations on the nematicidal properties of some mycotoxins. Fundam.appl. Nematol., 1995 ;18(5): 451-454.
  33. Steyn, P.S. The isolation, structure and absolute configuration of secalonic acid D, the toxic metabolite of Penicillium oxalicum. Tetrahedron Lett. 1970; 26(1): 51-57.
  34. Goh, TK., Hyde, KD. A synopsis of Trichocladium species, based on the literature. Fungal Divers., 1999; 2: 101-118.
  35. Barron, G.L., Thorn, R.G. Destruction of nematodes by species of Pleurotus Can.J.Bot., 1987; 65(4): 774-778.
  36. Dong, J.Y., Zhao, Z.X., Cai, L., Liu, S.Q., Zhang, H.R., Duan, M. , Zhang, K.Q. Nematicidal effect of freshwater fungal cultures against the pine-wood nematode, Bursaphelenchus xylophilus. Fungal Divers.2004; 15: 125-135.
  37. Sang, I. L., Keon, J. L., Chun, H.H., Sanghyun, H., Hyun, J. G., Kim, H M. , Lee, J.H. , Choi, H.J., Kim, H. H. , Shin, T.S., Park , H. W. , Kim, J.C. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita. Bioproc Biosyst Eng.2018;41(3):345-352.
  38. Moosavi, M.R., Zare, R., Zamanizadeh, H.R., Fatemy, S. Pathogenicity of Verticillium epiphytum isolates against Meloidogyne javanica. Int.J.Pest Manage.,2011;57(4): 291-297.
  39. Sarhy-Bagnon, V., Lozano, P., Saucedo-Castaneda, G., Roussos, S. Production of 6-pentyl-alpha-pyrone by Trichoderma harzianum in liquid and solid state cultures. Process Biochem., 2000; 36(1-2): 103-109.
  40. Casas-Flores, S., Herrera-Estrella, A.: Antagonism of plant-parasitic nematodes by fungi. In: The Mycota, Vol.VI: Environmental and Microbial Relationships, 2nd edn. (Kubicek, C.P., Druzhinina, I.S., eds). Springer-Verlag, Berlin, 2007; pp147-157.
  41. Song,H.C.,Shen,W.Y., Dong, J.Y. Nematicidal metabolites from Gliocladium roseum YMF1.00133. Appl. Biochem.Microbiol.,2016; 52(3):324-330.
  42. Zhang, H.X., Tan, J.L., Wei, L.X., Wang, Y.L., Zhang, C.P., Wu, D.K., Zhu, C.Y., Zhang, Y., Zhang, K.Q., Niu, X.M. Morphology regulatory metabolites from Arthrobotrys oligospora. J Nat Prod. ,2012;75:1419–1429.
  43. Stadler, M., Anke, H., Sterner, O. Linoleic acid, the nematicidal principle of nematophagous fungi. Arch Microbiol., 1993; 160(5):401-405.
  44. Zhao, Y., Su, H., Zhou, J., Feng, H., Zhang, K.Q., Yang, J. The APSES family proteins in fungi: Characterizations, evolution and functions. Fungal Genet.Biol.2015; 81: 271-280.
  45. Loan, T.T.N. ,Ja, Y.J.,  Kim,T.Y. ,  Yu, N.H.,  Park, A.R.,  Lee, S.,  Bae, C.H. ,  Yeo, J.H., Hur, J.S., Park, H.W., Kim, J.C. Nematicidal activity of verrucarin A and roridin A isolated from Myrothecium verrucaria against Meloidogyne incognita. Pestic. Biochem. Physiol. 2018; https://doi.org/10.1016/j.pestbp.2018;04.012.
  46. Yang, Hu., Zhang,W., Zhang,P., Ruan,W., Zhu.X. Nematicidal activity of Chaetobosin A produced by Chaetomium globosum NK102 against Meloidogyne incognita. J.Agric.Food Chem., 2013; 61(1):41-46.
  47. Borneman, J., Becker, J.O. Identifying microorganisms involved in specific pathogen suppression in soil. Annu .Rev. Phytopathol.,2007; 45:153-72.
  48. Stirling, G.R. Biological control of plant-parasitic nematodes: an ecological perspective, a review of progress and opportunities for Further Research. In: Biological Control of Plant-Parasitic Nematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms. Progress in Biological Control (Davies KG and Spiegel Y, eds). Dordrecht, the Netherlands ,Springer Science and Business Media, 2011; pp 1-38.
  49. Gray,NF. Nematophagous fungi with particular reference to their ecology. Biol.Rev. 1987; 62:245-304.
  50. Bailey,F., Gray,N. The comparison of isolation techniques for nematophagous fungi from soil.Ann. Appl. Biol., 2008; 114(1):125-132.
  51. Smith, M.E., Jaffee, B.J. PCR primers with enhanced specificity for nematode-trapping fungi (Orbiliales). Microbial Ecology. 2009;58: 117–128.
  52. Lohmann, U., Sikora, R.A., Hofer, M. Influence of phospholipids on growth, sporulation and virulence of the endoparasitic fungi Drechmeria coniospora, Verticillium balanoides and Harposporium anguillulae in liquid culture. J.Phytopathol.1989;125: 139-147.
  53. Duddington, C.L. Zoopagales. In: The Fungi. Vol 4B. (Ainsworth GC, Sparrow FK, Sussman AS, eds). New York: Academic Press. 1973; pp 231-234.
  54. Friman, E., Olsson, S., Nordbring-Hertz, B. Heavy trap formation by Arthrobotrys oligospora in liquid culture. FEMS Microbiol. Ecol., 1985; 31:17-21.
  55. Friman, E. Isolation of trap cells from the nematode-trapping fungus Dactylaria candida. Exp. Mycol., 1993; 17: 368-370.
  56. Brannen, P.M., Kenney, D.S. Kodiak®-A successful biological control product for suppression of soil-borne plant pathogens of cotton. J.Ind.Microbiol.Biotechnol., 1997; 19(3): 169-171.
  57. Jackson, MA. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J.Ind.Microbiol. Biot., 1997; 19(3): 180-187.
  58. Yang, X.B., del Rio, L. Implementation of biological control of plant diseases in integrated pest-management systems. In: Biological Control of Crop Diseases (Gnanamanickam SS, ed). Marcel Dekker, New York: pp. 2002; pp 343-358.
  59. Kerry, BR., Hominick, WM. Biological control. In: Biology of Nematodes (Lee, DL, ed). Taylor and Francis, London: 2002; pp 483-510.
  60. Fravel, DR. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol.,2005; 43: 337-359.
  61. Wilson, M.J., Jackson, T.A. Progress in the commercialization of bionematicides. BioControl., 2013; 58:715-722.
  62. Davies, K.G., Spiegel, Y.: Root patho-systems nematology and biological control. In: Biological Control of Plant-Parasitic Nematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms, Progress in Biological Control 11. (Davies, K.G. and Spiegel, Y. eds). Springer Science and Business Media, Dordrecht, the Netherlands, 2011; pp 291-303.
  63. Fravel, DR., Engelkes, CA. Biological management. In: Epidemiology and Management of Root Diseases(Campbell CL and Benson DL, eds). Springer-Verlag, Berlin, 1994; pp 292-308.
  64. Kerry, BR. Biological control. In: Principles and Practice of Nematode Control in Crops.(Brown RH, Kerry BR, eds).  New York: Academic Press.1987; pp 233-263.
  65. Moosavi, M.R., Askary, T.H.: Nematophagous fungi: Commercialization .In: Biocontrol Agents of Phytonematodes (Askary TH , Martinelli PRP, eds) CAB International. 2015; pp187-202.
  66. Kabaluk, J.T., Svircev, A.M., Goette, M.S., Woo, S.G. (eds). The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global, 2010; pp 99.
  67. Biro-Stingli T.,Toth F.The effect of Trifender (Trichoderma asperellum) and the nematode-trapping fungi (Arthrobotrys oligospora Fresenius) on the number of the northern root-knot nematode(Meloidogyne hapla Chitwood) in green pepper. J Plant Prot.Res., 2011; 51(4):371-376.

181.Warrior, P., Rehberger, L.A., Beacu, M., Grau, P.A., Kirfman, G.W. , Conley, J.M. Commercial development and introduction of DiTera TM, a new nematicide. Pesticide Science, 1999; 55: 376-379.

  1. Lamovsek,J., Urek, G., Trdan, S. Biological control of root-knot nematode (Meloidogyne spp.): microbes against the pests. Acta Agric Slov., 2013;101: 263-275.
  2. Cayrol, J.C., Frankowski, J.P., Laniece, A., Hardemare, G.D., Talon, J.P. Control of nematodes in mushroom cultures. Statement of a method of biological control using a predatory Hyphomycetes: Arthrobotrys robusta strain Antipolis (Royal 300). Rev.Hort.,1978; 184: 23-40.
  3. Cayrol,J.C. Possibilities of biological control of Meloidogyne nematode crop pest with the use of the ‘R350’ nematophagous fungus(Arthrobotrys irregularis).La Defense des Vegetaux ., 1981;35:279-282.
  4. Cayrol, J.C. Biological control of Meloidogyne by Arthrobotrys irregularis. Revue Nematol.,1983; 6: 265-273.
  5. Jaffee, BA., Muldoon, AE. Susceptibility of root-knot and cyst nematodes to the nematode-trapping fungi Monacrosporium ellipsosporum and M. cionopagum. Soil Biol.Biochem.,1995; 27: 1083-1090.
  6. Stirling, G.R., Mani, A.The activity of nematode-trapping fungi following their encapsulation in alginate. Nematologica ,1995;41(1-5): 240-250.
  7. Lackey, BA., Muldoon, AE. , Jaffee, BA. Alginate pellet formulation of Hirsutella rhossiliensis for biological control of plant parasitic nematodes. Biol.Control.,1993;3(2): 155-160.
  8. Patel, A.V., Jakobs Schonwandt, D., Rose, T. ,Vorlop, K.D. Fermentation and microencapsulation of the nematophagous fungus Hirsutella rhossiliensis in a novel type of hollow beads. Appl.Microbiol.Biotechnol.,2011; 89:1751-1760.
  9. Beixing, Li., Yupeng, Ren., Zhang, Da-xia., Xu, S.,Wei, M., Liu, F.Modifying the formulation of abamectin to promote its efficacy on southern root-knot nematode(Meloidogyne incognita) under blending of soil and root irrigation conditions. J.Agric.Food Chem. 66(4):799-805.
  10. Li, J., Zou, C., Xu, J., Ji, X., Niu, X., Yang, J., Huang, X., Zhang, KQ. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol., 2015; 53: 67-95.
Visited 1,389 times, 1 visit(s) today

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.