Volume 19, number 4
 Views: (Visited 329 times, 1 visits today)    PDF Downloads: 375

Hallan H. K, Walia G. K, Dhillon G. K. A Review on Cytogenetically Studied Species of Family Coenagrionidae (Odonata: Zygoptera). Biosci Biotech Res Asia 2022;19(4).
Manuscript received on : 16-08-2022
Manuscript accepted on : 24-11-2022
Published online on:  01-12-2022

Plagiarism Check: Yes

Reviewed by: Dr. Hind Shakir Ahmed

Second Review by: Dr. Prafulla Kumar Mohanty

Final Approval by: Dr. Eugene A. Silow

How to Cite    |   Publication History    |   PlumX Article Matrix

A Review on Cytogenetically Studied Species of Family Coenagrionidae (Odonata: Zygoptera)

Harkiran Kaur Hallan , Gurinder Kaur Walia* and Gagandeep Kaur Dhillon

Department of Zoology and Environmental Sciences, Punjabi University Patiala, Punjab, India.

Corresponding Author E-mail: gurinderkaur_walia@yahoo.co.in

DOI : http://dx.doi.org/10.13005/bbra/3034

ABSTRACT: Cytotaxonomy is useful for separating sister and cryptic species as well as for figuring out the evolutionary relationship between taxa. Family Coenagrionidae is considered as one of the largest zygopteran families under order Odonata. Globally, a lot of investigation has been undertaken on the family Coenagrionidae and significantly contributed by biologists throughout the world. Type number of the family Coenagrionidae is n=14 with XO-XX type of sex determining mechanism. Karyotypic variations within and between species are observed due to chromosome breaks and fusions, absence/presence of m chromosomes because of the holokinetic nature of chromosomes. Cytogenetically, 107 coenagrionid species have been studied all over the world which also includes 37 species from India. Among these, most of the species possesses n=14 haploid complement, while variation in chromosome number has been observed in 25% species.

KEYWORDS: Coenagrionidae; Holokinetic chromosomes; m chromosome; Recombination index; Sex determining mechanism

Download this article as: 
Copy the following to cite this article:

Hallan H. K, Walia G. K, Dhillon G. K. A Review on Cytogenetically Studied Species of Family Coenagrionidae (Odonata: Zygoptera). Biosci Biotech Res Asia 2022;19(4).

Copy the following to cite this URL:

Hallan H. K, Walia G. K, Dhillon G. K. A Review on Cytogenetically Studied Species of Family Coenagrionidae (Odonata: Zygoptera). Biosci Biotech Res Asia 2022;19(4). Available from: https://bit.ly/3uFw1lK

Introduction

Insects are one of the prime sources of karyological research. An entomologist tries to study each and every aspect of insects, but the most negligible and critical aspect is the chromosomal studies. Chromosomal analysis provides information about the genetic structure and nature of an organism and displays a wide range of variations. Cytological studies contribute in three ways: (1) to design natural and phylogenetic relationship among the various groups (2) to understand various cytogenetic processes in the evolution of different groups and (3) to solve twitched cases like variation among geographical races, individual abnormalities and polymorphic morphs.

Order Odonata includes three suborders, Zygoptera (damselflies), Anisoptera (dragonflies) and Anisozygoptera. Suborder Zygoptera comprises of 3162 species under 319 genera globally and 211 species under 59 genera and 9 families are present in India. Family Coenagrionidae is considered as one of the largest damselflies family. Taxonomically, 1351 species and 121 genera are present all over the world and 60 species and 12 genera are recorded in India 1. The first coenagrionid species, Ceriagrion rubiae was studied by Asana and Makino 2.  They documented that an unpaired X chromosome migrated to one pole during 3 secondary spermatocyte division in all the species. Size of m chromosomes varies from species to species and is closely related to the size of X element. However, in Ceriagrion rubiae, size of m chromosome is found to be equal to X chromosome. Kuznetsova and Golub revise the checklist of chromosome numbers for Odonata, which covers 92 species of the family Coenagrionidae. Presently, a review on 107 species of family Coenagrionidae has been catalogued and discussed based on key cytogenetic characteristics of the family (Table I). For this, the following parameters have been undertaken.

Holokinetic chromosomes

Evolution of chromosome number

m chromosomes

Recombination index

Sex determining mechanism

Table 1: Worldwide List of Cytogentically Studied Species of the Family Coenagrionidae.

S. No.

Name of the Species

Locality

Haploid (1n) number/ m-chromosomes

References

1

Acanthagrion ascendens

Calvert, 1909

Bolivia

14m

Cumming 31

2

Acanthagrion chacoense

Calvert, 1909

Bolivia

14m

Cumming 31

 

3

 

Acanthagrion  gracile

(Rambur, 1842)

Brazil

 

 

14

Kiauta 25

[as Acanthagrion  gracile minarum Selys, 1876]

Surinam

Ferreira 52

[as Acanthagrion  gracile minarum  Selys, 1876]

4

Aciagrion hisopa

(Selys, 1876)

India

 

India

14m

 

14m

Sandhu and Walia 53,  Walia 38,

Present study

5

Aciagrion pallidum

Selys, 1891

India

14m

Present study

6.

Aciagrion tilliyardi  

Laidlaw, 1919

India

 

14m

Sandhu and Walia 53, Walia 38,  Walia and Sandhu 27

7

Aeolagrion inca

Selys, 1876

Bolivia

14m

Cumming 31

[as  Aeolagrion foliaceum (Sjöstedt, 1918)]

8

Agriocnemis clauseni

(Fraser, 1922)

India

 

 

 

   India

14m

 

 

 

14m

Tyagi 54, 55,  Sandhu and Walia 53,   Walia 38,  Walia and Sandhu 27,

Present study

9

Agriocnemis femina

(Brauer, 1868)

Thailand

14

Kiauta and Kiauta 56

India

14m

Walia and Hallan 57

10

Agriocnemis lacteola

Selys, 1877

India

13m

Sandhu and Walia 53;  Walia 38;  Walia and Sandhu 27

11

Agriocnemis obscura

(Fraser, 1933)

India

 

(♀) 14,

18, 22, 26,

28

Walia 38; Sandhu and Walia 46,  Walia and Sandhu 27;  Walia 58

 

12

 

Agriocnemis pygmaea

 (Rambur, 1842)

India

14

Tyagi 55

India

12(neo- XY)

Handa and Kochhar 32

Thailand

14m

Kiauta and Kiauta 56

India

14m

Walia 38;  Walia and Sandhu 27; Walia and Hallan 57

13

Amphiagrion abbreviatum

(Selys, 1876)

U.S.A.

14

Cruden 24

14

Amphiallagma parvum

(Selys, 1876)

India

14m

Handa and Kochhar 41;  Walia 38;   Walia and Sandhu 27

[as Enallagma parvum Selys, 1876]

14

Present study

15

Argia apicalis

(Say, 1839)

USA

 

19

Kiauta and Kiauta 21

 

 

 

16

 

 

 

Argia fumipennis  (Burmeister, 1839)

Florida

14

Kiauta and Van Brink 59

[as Argia fumipennis  fumipennis (Burmeister, 1839)]

U.S.A.

14

Kiauta and Kiauta 22

[as  Argia fumipennis  atra Gloyd, 1968]

U.S.A.

14

Kiauta and Kiauta 21

 [as Argia fumipennis  fumipennis (Burmeister, 1839)]

Canada

14m

Kiauta and Kiauta 22

[as Argia fumipennis  violacea (Hagen, 1861)]

17

Argia funebris

(Hagen, 1861)

U.S.A.

14

Kiauta 20

Mexico

14(♀)

Kiauta and Kiauta 22

18

Argia immunda

(Hagen, 1861)

U.S.A.

14

Kiauta and Kiauta 22

19

Argia moesta

(Hagen, 1861)

Canada

 

13

Kiauta 68

U.S.A.

Kiauta and Kiauta 22

20

Argia nahuana

Calvert, 1902

U.S.A.

13

Kiauta and Kiauta 22

21

Argia sedula

(Hagen, 1861)

Bolivia

 

14

Cumming 31

U.S.A.

Cruden 24

U.S.A.

Kiauta and Kiauta 22

22

Argia tibialis

(Rambur, 1842)

U.S.A.

19

Kiauta and Kiauta 22

23

Argia translata

Hagen, 1865

U.S.A.

13m

Kiauta and Kiauta 22

24

Argia violcea

(Hagen, 1861)

U.S.A.

14

Cruden 24

25

Argia vivida

Hagen, 1865

U.S.A.

14

 

Cruden 24

26

Cercion lindani

(Selys, 1840)

Italy

14m

Kiauta 22

27

Ceriagrion auranticum

 Fraser, 1922

Thailand

14m

Kiauta and Kiauta 56

 [as  Ceriagrion latericium Lieftinck, 1951]

28

Ceriagrion azureum

 (Selys, 1891)

India

 

14

Das 61

Nepal

Kiauta 62, 50

29

Ceriagrion cerinomelas

Lieftinck, 1927

India

14

Das 61

Nepal

Kiauta 62, 50

 

 

 

30

 

 

 

Ceriagrion cerinorubellum (Brauer, 1865)

 

 

 

India

14m

Dasgupta 8

14m

Prasad and Thomas 63

13m,14m,15m

Tyagi 54;

Sandhu and Walia 23

14m

 

Walia 38;   Walia and Sandhu 27;  Walia and Kaur 37; Walia and Hallan 57

 

 

 

 

31

 

 

 

 

Ceriagrion coromandelianum (Fabricius,1798)

 

 

 

India

 

 

 

14m

 

Ray Chaudhuri and Dasgupta 39

Srivastava and Das 64

Das 61

Handa and Kochhar 32

Goni and Abenanta 65

Nepal

Sandhu et al. 66

 

 

India

 

Walia 38

14m/21/23

Walia and Sandhu 27

14m

Walia and Hallan 57

32

Ceriagrion  fallax

 Ris, 1914

India

 

 

India

14m

 

 

14m

Dasgupta 8;   Walia 38

Walia and Sandhu 27

Present study

33

Ceriagrion glabrum

 (Burmeister, 1839)

Swaziland (South Africa)

14

Boyes et al. 67

34

Ceriagrion lieftincki

Asahina, 1967

Philippines

 

14

Kiauta and Kiauta 56

35

Ceriagrion rubiae

Laidlaw, 1916

India

 

14m

Asana and Makino2; Makino 68; Kichijo 69

36

Ceriagrion tenellum

(Villers, 1789)

Italy

14m

Kiauta 70

37

Chromagrion conditum

 (Hagen, 1876)

U.S.A.

14

Cruden 24

38

Coenagrion armatum

(Charpentier, 1840)

Finland,

14

 

Oksala 36

U.S.S.R.

Makalowskaja 33

39

Coenagrion dyeri

  (Fraser, 1924)

 

 

 

India

 

(♀) 14

Walia 38

18

Sandhu and Walia 46

28

Walia and Sandhu 27

29

Walia 58

14

Makalowskaja 33

40

Coenagrion hastulatum (Charpentier, 1825)

U.S.S.R

14m

Kichijo 71, 72, 69

14

Makalowskaja 33

Russia

14

Perepelov and Bugrov 73

41

Coenagrion hylas

 (Trybom, 1889)

Austria

14

Kiauta and Kiauta 74

 [as Coenagrion hylas

freyi (Bilek, 1954)]

42

Coenagrion lunulatum (Charpentier, 1840)

Russia

14m

Perepelov and Bugrov 73

43

Coenagrion mercuriale  

(Charpentier, 1840)

Liechtenstein

 

14

Makalowskaja 33;

Kiauta 34

 

 

 

44

 

 

Coenagrion pulchellum

(Vander Linden, 1823)

U.S.S.R.,

Netherlands

14

Cruden 24

Former USSR

Makalowskaja 33

Netherlands

Kiauta 34

 

Russia

14m

Kuznetsova et al. 75

45

Coenagrion puella

(Linnaeus, 1758)

Russia

14m

Kuznetsova et al. 75

46

Coenagrion resolatum

(Hagen, 1876)

U.S.A.

14

Cruden 24

14m

Kichijo 71, 1942a,c

47

Coenagrion sp.

Japan

14m

Cumming 31

Kichijo 71, 72

48

Diceratobasis macrogaster (Selys, 1875)

Jamaica

14m

Cumming 31

Bolivia

14

Cruden 24

49

Enallagma aspersum

(Hagen, 1861)

U.S.A.

14

Cruden 24

50

Enallagma boreale

Selys, 1875

U.S.A.

14

Cruden 24

51

Enallagma carunculatum

 Morse, 1895

U.S.A.

14

Cruden 24

52

Enallagma circulatum

Selys, 1883

Russia

14m

Perepelov and Bugrov 73

53

Enallagma civile

(Hagen, 1861)

U.S.A.

14

 

 

Cruden 24

 

 

 

54

 

 

 

Enallagma cyathigerum (Charpentier, 1840)

Finland

14

 

Oksala 5

Former USSR

14

Makalowskaja 33

USA

14

Cruden 24

15

Netherlands

14m

Kiauta 42, 34

15m

55

Enallagma eprium

(Hagen, 1861)

U.S.A.

14

Cruden 24

56

Enallagma praevarum

(Hagen, 1861)

U.S.A.

14

Cruden 24

India

 

13m

Sandhu and Walia 53;  Walia 38;  Walia and Sandhu 27

57

Enallagama malayanum  

Selys, 1876

India

 

14

Oksala 36;

Makalowskaja 33

Kiauta 34

13m

Sandhu and Walia 53;  Walia 38;  Walia and Sandhu 27

58

Erythromma lindeni

(Selys, 1840)

Italy

14m

Kiauta, 1971

 

 

 

59

 

 

 

Erythroma najas

(Hansemann, 1823)

Finland

14

Oksala 36

Former USSR

14

Makalowskaja 33

Netherlands

14

Kiauta 42

Russia

14

Perepelov and Bugrov 73

Russia

14m

Kuznetsova et al. 75

India

13m/ 13

Walia 38;Walia and Sandhu 47;

14m

Walia and Kaur 37;  Walia and Hallan 57

60

Homeoura chelifera

(Selys, 1876)

Brazil

14m

Ferreira 52

 

 

61

 

 

Ischnura  aurora

(Brauer, 1865)

Nepal

14

Kiauta 62, 50

India

 

14

Handa and Kochhar 41

14

Walia 38

13m/ 13

Walia and Sandhu 47, 27

13

Walia and Kaur 37

14m

Walia and Hallan 57

62

Ischnura capreola

(Hagen, 1861)

Bolivia

14

Cumming 31

[as Ceratura capreola (Hagen, 1861)]

63

Ischnura cervula

 Selys, 1876

U.S.A

14

Cruden 24

64

Ischnura delicate

 (Hagen, 1854)

India

 

14

Handa and Kochhar 32, 76

65

Ischnura denticollis

(Burmeister, 1839)

U.S.A

14

Oksala 5;  Cruden 24;

Kiauta 42

66

Ischnura  elegans

 (Vander Linden, 1820)

Finland;

 

14

Oksala 36, 5

 

Netherlands

Kiauta 42

Russia

Perepelov 77

India

14m

Present study

 

67

 

Ischnura  fluviatilis

Selys,1876

Bolivia

14

Cumming 31

 

India

 

 

14

13

Walia 38;

Sandhu and Walia 78

13m/ 13

Walia and Sandhu 27

14m

Walia 38;  Walia and Sandhu 27

68

Ischnura  forcipata

Morton, 1907

India

14

Cruden 24

Nepal

Kiauta 50

India

13

Walia 38

India

14m

Present study

69

Ischnura inarmata  

Calvert, 1898

U.S.A.

15

Kiauta 25

India

14m

Walia 38; Walia and Sandhu 27, 47

70

Ischnura nursei

(Morton, 1907)

India

India

 

 

India

13m

13m

Tyagi 55;

 Present study

[as Rhodischnura nursei (Morton, 1907)]

14m

Present study

[as Rhodischnura nursei (Morton, 1907)]

71

Ischnura perparva

Selys,1876

U.S.A.

14

Cruden 24

Netherlands

14m

Kiauta and Van Brink 59

 

72

Ischnura pumilio

  (Charpentier, 1825)

Netherlands

15

Kiauta 25

 

Florida

14

Kiauta 50;

India

Sandhu and Walia 53

14m

Walia 38,

14

Walia and Sandhu 47, 27

73

Ishnura ramburi

 (Selys, 1850)

USA

14m

Kiauta and Brink 79

74

Ischnura rufostigma annandalei

Laidlaw,1919

Nepal

14

Kiauta 62, 50

[as Ischnura rufostigma annandalei Laidlaw, 1919]

India

 

 

 

India

14m

Sandhu and Walia 53

14

 

 

14

Walia 38,

Walia and Sandhu 47, 27

 

Present study

 

 

 

 

75

 

 

 

 

Ischnura senegalensis

 (Rambur, 1842)

Japan

14m

Kichijo 71, 72, 80

India

14m

Dasgupta 8

Bolivia

14

Cruden 24

Ethiopia

14m

Kiauta 34

Philippines

14m

Kiauta and Kiauta 22

Thailand

14

Kiauta and Kiauta 56

 

 

India

14m

Prasad and Thomas 63

14

Sandhu and Walia 23

14

Walia 38

14m

Walia and Sandhu 47, 27  Walia and Hallan 57

76

Ischnura ultima  

Ris, 1908

Bolivia

14

Cumming 31

77

Ischnura verticalis

 (Say,1839)

USA

14

Cruden 24

78

Leptagrion macrurum

(Burmeister, 1839)

Brazil

15+neo- XY

Kiauta 26

79

Mecistogaster sp. 1

Bolivia

15m

Cumming 31

80

Mecistogaster sp. 2

Bolivia

6+neo-XY

Cumming 31

81

Megalagrion oahuense (Blackburn,1884)

Hawaii

14

Kiauta 49

82

Mortnagrion selenion

(Ris, 1916)

Japan

14m

Kichijo 71, 72, 80

83

Nehalennia irene

(Hagen, 1861)

USA

14

Cruden 24

84

Nehalennia spectosa

(Charpentier, 1840)

Finland

14

Oksala 5

85

Oxyagrion hempeli

Calvert, 1909

Brazil

14

Souza Bueno 81

86

Oxyagrion terminale

 Selys, 1876

Surinam

14

 

Kiauta 25

Brazil

Ferreira, et al. 52

87

Paracercion hieroglyphicum (Brauer, 1865)

Japan

14m

Kichijo 71, 72, 80

 [as Coenagrion hieroglyphicum (Brauer, 1865)]

88

Paracercion malayanum

(Selys, 1876)

Nepal

14m

Kiauta 50

89

Proischnura subfurcata

(Selys, 1876)

Kenya

14

Wasscher 82

[as Enallagma subfurcatum Selys, 1876]

90

Pseudagrion acacia

(Foerst, 1906)

Republic of South Africa

14m

Boyes et al. 67

91

Pseudagrion australasiae

Selys, 1876

India

India

14m

14m

Dasgupta 8;

 Present study

 

92

Pseudagrion bengalense

Laidlaw, 1919

India

 

14m

 

Dasgupta 8;   Walia 38;   Walia and Sandhu 27

 

 

93

 

 

Pseudagrion decorum

 (Rambur, 1842)

 

 

 

India

14m

Dasgupta 8

>14m

Walia 38;   Sandhu and Walia 28

14m, 30, 38(♂)

Walia and Sandhu 27

15, 17, 21, 26, 28, 29

Walia 30

14m

Walia and Hallan 57

94

Pseudagrion hypermelas

 Selys, 1876

India

 

14m

Sandhu and Walia 53;   Walia 38;   Walia and Sandhu 27

95

Pseudagrion kersteni

 (Gerstacker, 1869)

Kingdom of Eswatini (Former Swaziland)

14

Boyes et al. 67

96

Pseudagrion laidlawi

Fraser, 1922

India

 

 

India

14m

 

 

14m

Sandhu and Walia 23;   Walia 38;

Walia and Sandhu 27; Present study

97

Pseudagrion microcephalum (Rambur, 1842)

India

14m

14m

Dasgupta 8;

Present study

Philippines

Kiauta and Kiauta 22

98

Pseudagrion pruinosum (Burmeister, 1839)

Thailand

14m

Kiauta and Kiauta 56

 

99

 

Pseudagrion rubriceps

Selys,1876

India

14m

Dasgupta 8

Philippines

14m

Kiauta and Kiauta 22

Thailand

14m

Kiauta and Kiauta 56

 

India

 

37, 43, 45, 14m

Sandhu and Walia  1999

Walia and Sandhu 27;   Walia 30

Walia and Hallan 57

100

Pseudagrion saliburyense

  Ris, 1921

Kingdom of Eswatini (Former Swaziland)

14m

Boyes et al. 67

101

Pseudagrion spencei

 Fraser,1922

India

14m

Dasgupta 8;   Walia 38;   Sandhu and Walia 28;   Walia and Sandhu 27;  Walia and Hallan 57

102

Pseudagrion whellani

 Pinhey, 1956

Burkina Faso (Former Voltiac Republic)

13m

Kiauta and Ochssée 35

103

Pyrrhosoma nymphula (Sulzer,1876)

Finland

28

Oksala 5

104

Telebasis carmesina

 Calvert, 1909

Surinam

14

Kiauta 25

Brazil

14

Ferreira et al. 52

105

Tigriagrion aurantingrum Calvert, 1909

Bolivia

14

Cumming 31

106

Xanthocnemis zealandica (mclachlan, 1873)

New Zealand

14

Jensen 83

 [as  Xanthocnemis zelandica (mclachlan, 1873)]

107

Zoniagrion exclamtionis (Selys, 1876)

USA

14

Cruden 24

Holokinetic Chromosomes

One of the fundamental components of chromosome structure is its kinetic organization. This has always been a disputed topic in the case of odonates. Oksala 4, 5, 6, 7 expresses that odonates possess localized centromere and his view has been shared by Dasgupta 8, Seshachar and Bagga 9 and White 10. On the other hand, Piza 11, 12 reports dicentric chromosomes in odonates, while Schrader 13, Hughes- Schrader14 and Lima de Faria15 agree with the opinion of diffused kinetochores.

In presently studied 21 Indian species it is found that two parallel chromatids without any constriction in chromosomes are seen during the spermatogonial metaphases of Ceriagrion cerinorubellum, Ceriagrion coromandelianum, Ischnura elegans, Ischnura senegalensis and rod shaped chromosomes are present in Aciagrion hisopa, Agriocnemis pygmaea, Ischnura aurora, Ischnura forcipata. At the time of late diakinesis, bivalents of holocentric chromosomes appear to be held together by end to end association due to the terminalisation of chiasmata. This is seen in almost all the studied species, while chromatids are seen to separate by parallel disjunction during anaphase- I in Agriocnemis pygmaea. The autosomal bivalents appear to be rod shaped in metaphase- I in all the studied species and when it enters in metaphase- II, the size of the chromosomes remain half as seen in Ischnura aurora, Ischnura forcipata, Pseudagrion laidlawi and Pseudagrion rubriceps. This type of chromosome behaviour also supports the holokinetic chromosomes in Odonata.

Evolution of chromosome number

Kiauta16, 17, 18 finds haploid number 12, 13 and 14 to be present in more than 90% of Odonata. He considers n=13 to be the type number of the order, which has been cytologically reported in 58% of studied species. Numerical variation in Odonata karyotype due to occurrence of breaks (leading to haploid numbers 10-15) and fusions (leading to haploid complements 3-7) has been explained graphically by him (Fig. 1). He combines genealogical observations of Fraser19 with cytological findings and concluded that family Coenagrionidae, Aeshnidae and Libellulidae are the most advanced and dominant families, which are of independent origin and are more ancient than present day dragonflies. He also considers greater chromosome numbers as an indication of advancement of families. Further, Kiauta 20 refers that in suborder Zygoptera only 39.4% possess n=13 and 53.6% show n=14. However, n=14 is peculiar only to the families Coenagrionidae and Protoneuridae. So, he considers n=13 as the type number of suborder Zygoptera. In the family Coenagrionidae, majority of the species possess type number n=14m, while variations (25% of species) in chromosome complement due to fusions (in 10% of species) and fragmentations (in 13 % of species)  have been also reported (Table-1).

Figure 1: Proposed hypothesis of karyotypic evolution in Odonata by Kiauta (1967c).

Click here to view figure

Fragmentations have been found in Argia apicalis 21 and Argia tibialis 22 (n=19); in  Ceriagrion cerinorubellum 23, Enallagma cyathigerum 24, Ischnura inarmata 25, Ischnura pumilio 25 and Leptagrion macrurum 26 (n=15m); in Ceriagrion coromandelianum 27 (n=21/23) and in Pyrrhosoma nymphula 5 (n=28). Sandhu and Walia 28, Walia and Sandhu  29 and Walia 30 report aberrant autosomal fragmentations in some species and conclude that aberrant fragmentations occur due to the effect of pollutants to increase the recombination index, which favour the flexibility of the genotype for adaptation of the species in the polluted water [Ceriagrion coromandelianum (2n♂=27/41/45), Coenagrion dyeri (2n♀ =28, 36, 56, 58), Pseudagrion rubriceps (2n♂,♀= 27, 37, 43, 45), Pseudagrion decorum (2n♂= 27, 34, 42, 52, 56, 58) and Agriocnemis obscura (2n♀= 28, 36, 44, 52, 56)].

Autosomal fusions in the family Coenagrionidae have been reported in Mecistogaster sp. 31 2 (n=6) in Agriocnemis pygmaea 32 (n=12); in Coenagrion mercuriale mercurial 33, 34 and Pseudagrion whellan 35 (n=13). Reduction in chromosome number (n=13) due to the absence of m chromosomes has been found in Ischnura aurora 27, 37 and Ischnura forcipata 38.

m chromosomes

m chromosomes have been used as a standard in comparative karyotypic studies of dragonflies for the first time by Ray Chaudhuri and Dasgupta 39. Kiauta 40 considers m chromosomes as fragments of normal autosomes, which occur by the fragmentations in normal chromosomes. Out of total 107 cytogenetically studied coenagrionid species, m chromosomes are found to be present in 35 species, absent in 50 species, while in 22 species m chromosomes show variations (means absent and present) (Table I). Absence or presence of m chromosome in the species might be due to the geographical isolated populations of the species. In present study, species n=14 (without m chromosomes) has been reported in Amphiallagma parvum (Himachal Pradesh, India), while n=14m observed in the same species (as named- Enallagma parvum) by Handa and Kochhar 41; Walia 38; Walia and Sandhu 27 (Punjab, India).

Recombination Index

Recombination index is the sum of number of bivalents and average number of chiasmata per nucleus can be considered key character of genetic system of a species (Darlington, 1939). Chiasma frequency is fixed in the order Odonata and change in chromosome number is the only way of changing the recombination index. Chromosomal fusions and fragmentations play a major role in the evolution and phylogeny of the order 42, 25, 35, 43, 44, 45, 28, 46, 47, 29, 48.

In the family Coenagrionidae, most of the male damselflies possess single chiasma per bivalent which indicates that the species are well adapted to its habitat. Increase in recombination index by autosomal fragmentation has been reported in Enallagma cyathigerum (n= 15m) 24, 49, Ceriagrion cerinorubellum (n= 15m) 50, Ischnura pumilio (2n=29) 51, and Ceriagrion coromandelianum (n=14m/21/23) 27. Moreover, aberrant fragmentations due to the effect of pollutants have been found in Ceriagrion coromandelianum (2n♂==27, 37, 45), Coenagrion dyeri (2n♀=28, 36, 56, 58), Pseudagrion rubriceps (2n♂=27, 37, 43, 45 and 2n♀= 28, 41, 45), Pseudagrion decorum (2n=27, 34, 42, 52, 54) and Agriocnemis obscura (2n♀=28, 36, 44, 52, 56) 28, 46, 29, 27, 30.   

Autosomal fusions decrease the chromosome number as well as recombination index, which favour the survival value and reproductive capability of the species to settle over the whole geographical range for ecological adaptation. In the family Coenagrionidae, autosomal fusions have been reported in Pseudoagrion whellani (n=13) 25 and Agriocnemis pygmaea (n=12) 32 and Coenagrion mercuriale mercuriale (n=13) 45.

It has been reported that in the currently studied species, 17 coenagrionid species only have one chiasma per bivalent, while Agriocnemis femina and Ischnura rufostigma have two large autosomal bivalents, and Pseudagrion laidlawi, Pseudagrion microcephalum and Pseudagrion rubriceps have one large autosomal bivalent that has both interstitial as well as terminal chiasma. Increase in number of chiasmata increases the recombination index of the species, which promote flexibility of the genotype for adaptation and considered as cytological marker of the species.

Sex determining mechanism

All the primitive orders of exopterygote insects seem to have male heterogamety, usually of XO type. Numerous instances are seen in which XO: XX sex chromosomes systems reverted to XY: XX form in case of acrocentric chromosomes. Such a fusion is said to create a neo- X chromosome and when the fusion reaches the fixation in the population, the original acrocentric autosome is confined to the male line and constitutes neo- Y 10. Kiauta 50 also considers XO: XX sex determining mechanism as the most primitive condition of the odonates and presented the graphical interpretation of the evolution of sex determining mechanisms in dragonflies (Fig. 2). In the family Coenagronidae, majority of the species possess XO-XX type of sex determining mechanism. However, neo- XY mechanism has been reported in Leptagrion macrurum 26, in Agriocnemis pygmaea 32 and in Mecistogaster Sp. 2 31. According to reports, the sex chromosome in males is univalent achiasmatic and exhibits bipartite behaviour during meiosis I, supporting the stability of the XO-XX type of sex determination in the Coenagrionidae family.

Figure 2: Evolution of the sex determining mechanisms in the order (Kiauta, 1975).

Click here to view figure

Conclution

Chromosome number of coenagrionid species varies over a relatively wide range, from n = 6 in Mecistogaster sp. 2 31 to n = 38 in Pseudagrion decorum 27, while n=14m is considered as the type number of the family Coenagrionidae. Increase in chromosome number is related to evolutionary advancement of families, Coenagrionidae and Libellulidae, while decreased in number is related to primitive families, Chlorocyphidae and Gomphidae. Decrease in chromosome number also occurs due to the gradual diminution and ultimate disappearance of the m chromosomes. The presence of contaminants in the stagnant water causes an aberration in the chromosomal complement of the species.

Acknowledgements

We acknowledge technical support of Department of Zoology and Environment Sciences and Sophisticated Instruments Centre, Punjabi University, Patiala. Punjab, India.

Conflicts of Interest

Authors declare no competing interests.

Funding Sources

This work was supported by CSIR, NEW DELHI, [grant 37(1716)/18/EMR-II] to Gagandeep Kaur Dhillon (SRF) in the CSIR Project entitled “DNA Barcoding of Dragonflies and Damselflies (Odonata: Insecta) based on Mitochondrial COI Gene” under the supervision of Dr. Gurinder Kaur Walia (Principal Investigator), Department of Zoology and Environmental Sciences, Punjabi University, Patiala.

References

  1. Subramanian K. A., Babu, R. Checklist of Odonata (Insecta) of India. 2017; Version 3.0.zsi.gov.in.
  2. Asana J. J., Makino S. A comparative study of the chromosomes in the Indian dragonflies. Journal of Faculty of Science 1935;4:67-86.
  3. Kuznetsova V. G., Golub N. V. A checklist of chromosome numbers and a review of karyotype variation in Odonata of the world. Comparative Cytogenetics 2020; 14(4):501-540.
  4. Oksala T. Zytologische Studien and Odonaten I. Chromosome verhalnissebei der Gattung Aeschamit besonderer Berucksichtigung der postreduktionellen Teilung der Bivalente. Annales Academiae Scientiarum Fennicae 1943;4:1-64.
  5. Oksala T. Zytologische Studien an Odonaten III. Die Ovogense. Annales Academiae Scientiarum Fennicae 1945;9(4):1-32.
  6. Oksala T. The concept and mechanics of chromosome reduction. Hereditas 1948;34:104-112.
  7. Oksala T. Chiasma formation and chiasma interference in the Odonata. Hereditas 1952;38:449-480.
  8. Dasgupta J. Cytological studies of some Indian dragonflies. II: A study of the chromosomes during meiosis in thirty species of Indian Odonata (Insecta). Proceedings of Zoological Society,Calcutta 1957;10:1-65.
  9. Seshachar B. R., Bagga S. Chromosome number and sex determining mechanism in dragonfly Hemianax ephippiger (Burmeister). Cytologia 1962;27(4):443-449.
  10. White M. J. D. Animal cytology and evolution. 3rd Cambridge University Press, Cambridge. 1973; pp 468.
  11. Piza S. de T. The present status of the question of the kinetochore. Genetica Iberica 1950;2:193-199.
  12. Piza S. de T. The crucial proofs of the dicentricity of Hemiptera chromosomes. Anais de escola superior de agricultura “Luis de Queiros” 1953;10:156-186.
  13. Schrader F. The role of kinetochore in the chromosomal evolution of Heteroptera and Homoptera. Evolution, 1947;1:134-142.
  14. Hughes- Schrader S. Cytology of coccids (Coccidae- Homoptera). Advances in Genetics 1948;2:127-203.
  15. Lima de Faria A. Genetic origin and evolution of kinetochores. Hereditas 1949;35:422-444.
  16. Kiauta B. Considerations on the evolution of the chromosome complement in Odonata. Genetica 1967a;38(4):430-446.
  17. Kiauta B. Evolution of the chromosome complement in Odonata. Genetica 1967b;38(3):403-404.
  18. Kiauta B. A new hypothesis on the evolution of the chromosome complement in Odonata. Tombo 1967c;10(1-4):29-33.
  19. Fraser F. C. (1957). A reclassification of the order Odonata. Royal Zoological Society of New South Wales, Sydney, Australia. pp 155.
  20. Kiauta B. Synopsis on the main cytotaxonomic data in the order Odonata. Odonatologica 1972b;1(2):73-102.
  21. Kiauta, B., Kiauta M. On a small collection of dragonfly karyotypes from the Philippines. Odonatologica 1980a;9(3):237-245.
  22. Kiauta B., Kiauta M. Introduction to the cytotaxonomy of the odonate genus Agria Rambur (Zygoptera: Coenagrionidae). Odonatologica 1980b;9(1):35-56.
  23. Sandhu R., Walia G. K. Karyological studies of four species of damselflies (Odonata: Zygoptera). Advances in Oriental Odonatology, K. Srivastava (eds.) 1994; pp 101-109.
  24. Cruden R. W. Chromosome numbers of some North American dragonflies (Odonata). Canadian Journal of Genetics and Cytology 1968;10:200-214.
  25. Kiauta B. The karyotypes of some Anisoptera from Surinam. Odonatologica 1979;2:267-283.
  26. Kiauta B. The karyotype of the damselfly, Leptagrion macrurum (Burmrister, 1839) and its possible origin, with a note on the cytotaxonomic affinities on the genus (Zygoptera: Coenagrionidae). Odonatologica 1972a;1(1):31-35.
  27. Walia G. K., Sandhu R. Comparative chromosome data on twenty three species of family Coenagrionidae (Zygoptera: Odonata). Bionature 2002;22(2):79-97.
  28. Sandhu R., Walia G. K. Cytogenetic data on genus Pseudoagrion (Zygoptera: Coenagraionidae). Fraseria 1996;3:21-25.
  29. Walia G. K., Sandhu R. Autosomal fragmentation in five species of family Coenagrionidae (Zygoptera: Odonata). Fraseria 1999;5:45-47.
  30. Walia G. K. The effects of pollutants on the genotype of five species of the family Coenagrionidae (Zygoptera: Odonata). Ecobiology of Aquatic Insects, Daya publishing house, Delhi. 2008a; pp 133-138.
  31. Cumming R. B. Cytogenetic studies in the order Odonata. Ph.D. thesis, University of Texas, Austin, 1964.
  32. Handa S. M., Kochhar N. Cytology of eight species of damselflies (Zygoptera: Odonata). Proceedings of 67th Indian Science Congress, Part III 1980; pp. 104.
  33. Makalowskaja W. N. Comparative karyological studies of dragonflies (Odonata). Archives D’Anatomie, D’Histologie Et D’Embryologie Normales Et Experimentales, Leningrad 1940;25(1):24-39.
  34. Kiauta B. The chromosomes of the eight dragonfly species from Continental Africa and Madagascar (Odonata). Arnoldia 1969c;4(15):1-8.
  35. Kiauta B., Ochssee B. V. Some dragonfly karyotypes from the Voltaic Republic (Haute Volta), West Africa. Odonatologica 1979;8(1):47-54.
  36. Oksala T. Uber tetraploidie der binde-und fettgewebe beiden Odonaten. Heriditas 1939;25:132-144.
  37. Walia G. K., Kaur J. Karyological study on ten odonate species from Manglore (Karnataka), India. Hislopia Journal  2011;4(1):83-88.
  38. Walia G. K. Cytological studies on some North and North-East Indian Odonata. Ph. D. Thesis, Punjabi University, Patiala, 1996.
  39. Ray Chaudhuri S. P., Dasgupta J. Cytological studies on the Indian dragonflies I. Structure and behaviour of chromosomes in six species of dragonflies (Odonata). Proceedings of Zoological Society, Bengal 1949;2(1): 81-93.
  40. Kiauta B. Variation in size of the dragonfly m chromosome, with considerations on its significance for the chorogeography and taxonomy of the order Odonata and notes on the validity of the rule of Genetica 1968a;39(1): 64-74.
  41. Handa S. M., Kochhar N. Chromosomal architecture in two species of damselflies from Chandigarh and its surrounding areas. National Seminar on Current Trends in Chromosome Dynamics, Chandigarh, 1985; pp
  42. Kiauta B. Autosomal fragmentations and fusions in Odonata and their evolutionary implications. Genetica 1969a;40(2):158-180.
  43. Tyagi B. K. Cytotaxonomy of the Indian dragonflies. Indian Review of Life Sciences 1982;2:149-161
  44. Tyagi B. K. Cytogenetics, Karyosystematics and Cytophylogeny of the Indian Odonata. Indian Review of Life Sciences 1986;6:215-229.
  45. Kiauta B., Kiauta M. The unusual recombination potential and its ecological implications in Coenagrion mercuriale mercuriale Charp. from Liechtenstein (Zygoptera: Coenagrionidae). Notulae Odonatologicae 1988;3(2):34-35.
  46. Sandhu R., Walia G. K. Karyology of male and female Pseudoagrion rubriceps (Zygoptera: Coenagrionidae). Bionature 1999;19(1): 1-5.
  47. Walia G. K., Sandhu R. Karyotypic studies on five species of Ischnura (Zygoptera: Coenagrionidae). Fraseria 1997;4(1/2):9-12.
  48. Walia G. K. The effects of pollutants on the genotype of five species of the family Coenagrionidae (Zygoptera: Odonata). Ecobiology of Aquatic Insects, Daya publishing house, Delhi. 2008c;pp. 133-138.
  49. Kiauta B. Sex chromosomes and sex determining mechanism in Odonata, with a review of the cytological conditions in the family Gomphidae and references to the karyotypic evolution in the order. Genetica 1969b;40:127-157.
  50. Kiauta B. Cytotaxonomy of dragonflies, with special reference to the Nepalese fauna. Nepal Research Centre 1975; pp 1-78.
  51. Kiauta B. The karyotype of some Anisoptera from Surinam. Odonatologica, 1979;8(4):267-283.
  52. Ferreira A., Kiauta B., Zaha A. Male germ cell chromosomes of thirty-two Brazilian dragonflies. Odonatologica 1979;8:5–22.
  53. Sandhu R., Walia G. K. Chromosome complements in six species of damselflies. Chromosome Information Service 1993;54:22-23.
  54. Tyagi B. K. The chromosome number and sex determining mechanisms newly recorded in thirteen Indian dragonflies (Odonata). Chromosome Information Service 1978a;25:5-7.
  55. Tyagi B. K. 1978b Studies on the chromosomes of Odonata of Dun Valley (Dehradun, India). Ph.D. Thesis, University of Garhwal, Srinagar.
  56. Kiauta B., Kiauta M. The chromosome numbers of some Odonata from Thailand. Notulae Odonatologicae 1983;2(2):17-32.
  57. Walia G. K., Hallan H. K. Cytogenetic report on ten coenagrinid species (Coenagrionidae: Zygoptera: Odonata) from Harike wetland, Punjab, India. Hislopia Journal 2016;9(1/2):13-19.
  58. Walia G. K. C- heterochromatin in chromosomes of dragonflies (Odonata). Abstract: “Eightth International Symposium of Odonatology”, Nagpur. 2008b; pp 75.
  59. Kiauta B., Van Brink J. M. Male chromosome complements of some Florida dragonflies, United States. Odonatologica 1978;7(1):15-25.
  60. Kiauta B. Two cytotaxonomically interesting cases of irreversible autosome fusion in dragonflies: Argia moesta Hagen (Zygoptera: Coenagrionidae) and Anaiciaeshna isosceles Muller (Anisoptera: Aeschnidae). Notulae Odonatologicae 1978;1(1):7-9.
  61. Das C. Studies on the association between non-homologous chromosomes during meiosis in four species of the Indian dragonflies (Odonata). Journal of Zoological Society of India 1956;8:129-132.
  62. Kiauta B. Introduction to insect cytotaxonomy. Lectures delivered at the Tribhuvan University, Kathmandu, Vol. 1. Nepal Research Center, Kathmandu, 1974; pp 81.
  63. Prasad K., Thomas, K. I. C-band pattern homogeneity in dragonflies (Odonata). Caryologia 1992;45:57–68.
  64. Srivastava M. D. L., Das C. C. Heteropycnosis in the autosome segments of Ceriagrion coromandelianum (Odonata). Nature 1953;172:765.
  65. Goni P. and Abenanta De Y. P. Cytological notes on five dragonfly species from Uruguay. Odonatologica 1982;11(4):323-329.
  66. Sandhu R., Walia G., Gulati S. Chromosomal studies of three abundantly occurring damselflies from Himachal Pradesh (India). Advances in Oriental Odonatology, V.K.Srivastava (eds.). 1994; pp 93-100.
  67. Boyes J. W. Van Brink J. M., Kiauta B. Sixteen dragonfly karyotypes from the republic of South Africa and Swaziland, with evidence on the possible hybrid nature of Orthetrum julia falsum Longfield (Anisoptera: Libellulidae). Odonatologica 1980;9:131-145.
  68. Makino S. A comparative study of the chromosomes in the Indian dragonflies. Japanese Journal of Genetics 1935;11:234-235.
  69. Kichijo H. Insect chromosomes. III. Order of dragonflies, Pt. 1. Nagasaki Medical Journal 1942c;20(7):1084-1092.
  70. Kiauta B. Studies on the germ cell chromosome cytology of some cytotaxonomically interesting or hitherto not studied Odonata from the autonomous region Friuli-Venezia Giulia (northern Italy). Atti del Museo civico di Storia naturale di Trieste 1971;27:65–127.
  71. Kichijo H. Chromosomes of seven species of insects belonging to the order of dragonflies, suborder of damselfies. Nagasaki Medical Journal 1941;19(10):2033-2041.
  72. Kichijo H. A comparative study of seven species of Zygoptera from Japan. Acta Medica Nagasakiensia 1942a;3(2):95-97.
  73. Perepelov E. A., Bugrov, A. G. The constituent geterochromatin in karyotypes of dragonflies. Belyshevia 2001;1(1):10-13.
  74. Kiauta B., Kiauta M. Biogeographic considerations on Coenagrion hylas freyi (Bilek, 1954), based mainly on the karyotype features of a population from North Tyrol, Austria (Zygoptera: Coenagrionidae). Odonatologica 1991;20(4): 417-431.
  75. Kuznetsova V. G., Maryańska-Nadachowska A., Anokhin B. A., Shapoval N. A., Shapoval A. P. Chromosomal analysis of eight species of dragonflies (Anisoptera) and damselflies (Zygoptera) using conventional cytogenetics and FISH: insights into the karyotype evolution of the ancient insect order Odonata. Journal of Zoological Systematics and Evolutionary Research 2020b;58:1–13.
  76. Handa S. M., Kochhar N. The chromosome number of two coenagrionid damselflies from Punjab, India (Zygoptera). Notulae Odonatologicae 1981;1:22.
  77. Perepelov E. A. Karyotype evolution of Odonata (Insecta) of Northern Palearctics. Ph.D. Thesis, Novosibirsk, Russian Federation: Institute of Systematics and Ecology of Animals of Siberian Branch of Russian Academy of Sciences, 2003; pp 144.
  78. Sandhu R., Walia G. K. Chromosome analysis of Ischnura inarmata (Coenagrionidae: Zygoptera: Odonata). Chromosome Science 1997;1: 115- 116.
  79. Kiauta B., Brink J. M. Male chromosome complements of some Florida dragonflies, United States. Odonatologica 1978;7(1):155–25.
  80. Kichijo H. On the chromosomes of some species of the zygopterous dragonflies (Odonata, Zygoptera). Japanese Journal of Genetics 1942b;18:273-276.
  81. Souza Bueno A. M. Estudos cromossomicos na ordem Odonata. M. Sc. Dissertation, Universidad Estatal Paulista, 1982; pp 140.
  82. Wasscher M. The karyotypes of some dragonflies from Kenya and Sudan. Notulae odonatologicae 1985;2(6):105-106.
  83. Jensen A. L. The karyotypes of five species of Odonata endemic to New Zealand. Odonatologica 1980;9: 29–33.
(Visited 329 times, 1 visits today)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.