Volume 19, number 4
 Views: (Visited 227 times, 1 visits today)    PDF Downloads: 338

omal D. S, Walia G. K. Cytological Study of Family Aeshnidae (Odonata: Anisoptera) From India: A Review. Biosci Biotech Res Asia 2022;19(4).
Manuscript received on : 23-11-2022
Manuscript accepted on : 17-12-2022
Published online on:  20-12-2022

Plagiarism Check: Yes

Reviewed by: Dr. Prafulla Kumar Mohanty

Second Review by: Dr. Daya Shankar Gautam

Final Approval by: Dr. Eugene A. Silow, Dr. Prof. Imran Ali

How to Cite    |   Publication History    |   PlumX Article Matrix

Cytological Study of Family Aeshnidae (Odonata: Anisoptera) From India: A Review

Dalveer Singh Somal and Gurinder Kaur Walia*

Department of Zoology and Environmental Sciences, Punjabi University, Patiala - 147002, Punjab, India.

Corresponding Author E-mail: gurinderkaur_walia@yahoo.co.in

DOI : http://dx.doi.org/10.13005/bbra/3035

ABSTRACT: Cytological review of 59 aeshnid species and cytogenetic investigations on Anax ephippiger, Anax immaculifrons, Anax indicus, Anax nigrofasciatus nigrolineatus, Anax parthenope, Gynacantha subinterrupta of the family Aeshnidae by carbol fuchsin staining and C - banding have been under taken. All the species posses 2n = 27m with X0 - XX sex determination except Anax ephippiger with 2n = 14 + neo XY, resulted by the 13 simultaneous fusions among the autosomes and between autosome and sex chromosome. The structure and behaviour of chromosomes, variation in size of m chromosomes and X chromosome and distribution of C - heterochromatin have been studied and compared among the species.  C - bands are mostly present at the terminal regions of autosomal bivalents, while Anax ephippiger and Anax parthenope  also possess C - bands at the interstitial and sub-terminal regions of the bivalents.  Moreover, sex chromosome and m bivalent show variation in distribution of C-heterochromatin in the species. Out of these, chromosome complement of Anax indicus Lieftinck, 1942 and C - banding on Anax ephippiger and Anax indicus have been investigated for the first time. List of cytologically studied species of family Aeshnidae has been updated to 60 species.

KEYWORDS: Anisoptera; Aeshnidae; Chromosome complement; C - heterochromatin; Micro chromosomes (m); Sex determination

Download this article as: 
Copy the following to cite this article:

omal D. S, Walia G. K. Cytological Study of Family Aeshnidae (Odonata: Anisoptera) From India: A Review. Biosci Biotech Res Asia 2022;19(4).

Copy the following to cite this URL:

omal D. S, Walia G. K. Cytological Study of Family Aeshnidae (Odonata: Anisoptera) From India: A Review.Biosci Biotech Res Asia 2022;19(4). Available from: https://bit.ly/3jbcVBr

Introduction

Family Aeshnidae (Anisoptera) includes large and vigorous dragonflies known as hawkers or darners or aeshnids. Aeshnids (Greek: ‘aeschna’ means ‘ugly’) are homogeneous in shape and their markings are nonmetallic with variable colors.  Taxonomically, family Aeshnidae includes 54 genera, 480 species all over world, while 13 genera representing 49 species are available in India (Subramanian and Babu, 2017). Cytogenetic data pertaining to 59 species under the genera Aeshna, Anaciaeschna, Anax, Andaeschna, Austroaeschna, Basiaeschna, Boyeria, Caliaeschna, Castoraeschna, Cephalaeschna, Coryphaeschna, Gynacantha, Gynacanthaeschna, Oplonaeschna, Planaeschna, Remartinia, Rhionaeschna and Staurophlebia have been reviewed which also includes 11 species from India (Table 2). Presently, cytogenetic investigations on Anax ephippiger, Anax immaculifrons, Anax indicus, Anax nigrofasciatus nigrolineatus, Anax parthenope and Gynacantha subinterrupta by carbol fuchsin staining and C – banding have been attempted. All the species posses 2n = 27m with X0 – XX sex determination except Anax ephippiger with 2n = 14 + neo XY sex determination. Distribution of C – heterochromatin has been observed and compared among the species. Chromosome complement of Anax indicus (Lieftinck, 1942) and C – banding on Anax ephippiger (Burmeister, 1839) and Anax indicus (Lieftinck, 1942) has been analysed for the first time. List of cytologically studied species of family Aeshnidae has been updated to 60 species.

Materials and methods

Male specimens of Anax ephippiger, Anax immaculifrons, Anax indicus, Anax nigrofasciatus nigrolineatus, Anax parthenope and Gynacantha subinterrupta were captured from different localities from India (Table 1). Alive specimens were dissected in 0.67 % saline solution (Sodium chloride in distilled water) in the field and testes were removed from the abdomen. Subsequently, the testes were put in sodium citrate (0.9 %) for 45 minutes and then fixed in freshly prepared Carnoy’s fixative (3 parts absolute alcohol : 1 part glacial acetic acid) and tapped on grease – free slides. Slides were proceeded for carbol fuchsin staining (Carr and Walker, 1961) and C – banding (Sumner, 1972). Relevant meiotic stages were micro- photographed for further cytogenetical investigations.

Table: 1: Collection details of species of family Aeshnidae.

S. No.

Species

Common Name

Locality

Latitude

Logitude

 

Altitude

Month/Year

1

Anax ephippiger (Burmeister, 1839)

Vagrant emperor

Sangrur

(Punjab)

30º 36’ 95” N

75º 86’ 13” E

240m

July, 2020

2

Anax immaculifrons

Rambur, 1842

Magnificent emperor

Andretta

(Himachal Pradesh)

32º 03’ 50” N

76º 33’ 46” E

1301m

May, 2018

3

Anax indicus  Lieftinck, 1942

Lesser Green Emperor

Nagpur

(Maharashtra)

21º 14’ 58” N

79º 08’ 82” E

310m

September, 2018

4

Anax nigrofasciatus

nigrolineatus

Fraser, 1935

Blue – spotted Emperor

Dal lake,

(Himachal Pradesh)

32º 24’ 71” N

76º 18’ 38” E

1775m

June, 2018

5

Anax parthenope

(Seyls, 1839)

Lesser emperor

Patiala

(Punjab)

30º 30’ 95” N

76º 31’ 76” E

257m

May, 2019

6

Gynacantha subinterrupta

Rambur, 1842

Dingy dusk hawker

Andretta

(Himachal Pradesh)

32º 03’ 50” N

76º 33’ 46” E

1301m

September, 2017

Results

Carbol fuchsin staining

Chromosome complement of Anax immaculifrons (Fig. 1c), Anax indicus (Fig. 1e), Anax nigrofasciatus nigrolineatus (Fig. 1g), Anax parthenope (Fig. 2a), Gynacantha subinterrupta (Fig. 2c) show 2n (♂) = 27 (24A+2m+X0), while the only exception is Anax ephippiger with 2n (♂) = 14 (10A + 2m + neo – XY) resulted by the 13 simultaneous fusions in the complement (Fig. 1a). Moreover, variation in the size of sex chromosome and m chromosomes is observed. X chromosome is 2nd smallest in Anax nigrofasciatus nigrolineatus, Gynacantha subinterrupta, while it is medium sized in Anax immaculifrons, Anax parthenope and is of large sized in Anax indicus and Anax ephippiger (neo – XY). The size of m bivalent is slightly smaller than X chromosome in Anax parthenope (Fig. 2a), minute in Anax immaculifrons (Fig. 1c), Anax indicus (Fig. 1e), Anax nigrofasciatus nigrolineatus (Fig. 1g), Gynacantha subinterrupta (Fig. 2c) and small in Anax ephippiger (Fig. 1a) (Table 3).

C banding

During diplotene, in Anax ephippiger, cross shaped autosomal bivalent are showing the terminal, sub – terminal and interstitial C – bands, m bivalent possesses less amount of C – heterochromatin, while neo – XY bivalent is cross shaped and showing interspersed C – bands in (Fig. 1b). Similarly, in Anax parthenope, bivalents show terminal and interstitial C – bands, while m bivalent possesses less amount of C – heterochromatin and X chromosome reveals terminal C – bands (Fig. 2b). During the diakinesis, Anax indicus (Fig. 1f), Anax nigrofasciatus nigrolineatus (Fig. 1h) and Gynacantha subinterrupta (Fig. 2d) and metaphase – I, Anax immaculifrons (Fig. 1d) autosomal bivalents possess terminal C – bands, while m bivalent is C – negative  except in Anax nigrofasciatus nigrolineatus (Fig. 1h) with less amount of C – heterochromatin and X chromosome is entirely C – positive in all the species (Table 4).

Figure 1: Anax ephippiger Normal complement 1a. Diakinesis, C – banding 1b Diplotene. Anax immaculifrons Normal complement 1c. Diakinesis, C – banding 1d Metaphase – I. Anax indicus Normal complement

Click here to view figure

 

Figure 2: Anax parthenope Normal complement 2a. Diakinesis, C – banding 2b Diakinesis. Gynacantha subinterrupta Normal complement 2c. Diakinesis, C – banding 2d. Diplotene. 

Click here to view figure

Discussion

Cytogenetic data pertaining to 60 species (including Anax indicus of present study) of family Aeshnidae have been reviewed. Chromosome number in males varies from 2n = 14 – 27, resulted by the fusion of chromosomes (Fig. 3). The species are differentiated on the basis of chromosome numbers as 2n = 14, 15, 19, 21, 23, 24 (1species each); 2n = 16 (2 species each); 2n = 25 (4 species each); 2n = 26 (4 species each) and 2n = 27 (44 species). Most frequent chromosome number is 2n = 27 which is present in 73.3% of the species and considered as the type number of the family (Table 2).

Table 2: List of cytogenetically examined species of the family Aeshnidae. Nomenclature is based on ‘World Odonata List’ by Paulson et al. (2022).

Serial No.

Name of species

Locality

Chromosome complement

Sex determination

m  chromosomes

References

1

Aeshna caerulea

(Strom,1783)

Finland

n = 12

neo – XY

Absent

Oksala, 1943

2

Aeshna canadiensis

Walker, 1908

U. S. A.

n = 14

X0

Present

Cruden, 1968

3

Aeshna clepsydra

Say, 1839

U. S. A.

n = 14

X0

Present

Hung, 1971

4

Aeshna crenata

Hagen, 1856

Finland

Russia

n = 14

n = 14

X0

X0

Present,

Absent

Oksala, 1943;

Perepelov and Bugrov, 2002

5

Aeshna cyanea

(Muller, 1764)

Finland

Netherlands

n = 14

n = 14

X0

X0

Present

Present

Oksala, 1943;

Kiauta, 1969b

6

Aeshna grandis

(Linnaeus, 1758)

U. S. S. R

 

U. S. S. R

Finland

Netherlands

 

Russia

Finland

n = 14

 

n = 13

n = 13

n = 13

 

2n = 26

n = 13

X0

 

X0

neo – XY

neo –  XY

 

neo – XY

X0

Present

 

Present

Present

Present

 

Present

Absent

Fuchsowna and Sawczynska, 1928;

Makalowskaja, 1940;

Oksala, 1939, 1943, 1944, 1945;

Kiauta, 1967a – d, 1968a – b, 1969b;

Perepelov and Bugrov, 2002;

Nokkala et al., 2002

7

Aeshna isoceles (Muller, 1767)

U. S. A.

n = 14

X0

Absent

Kiauta, 1978 under the name Anaciaeschna  isosceles

(Muller, 1767)

8

Aeshna juncea

(Linnaeus, 1758)

U. S. S. R.

Finland

Italy

Russia

n = 13

n = 13

n = 14

2n = 26

neo – XY

neo – XY

X0

neo – XY

Present

Present

Present

Present

Makalovskaja, 1940;

Oksala, 1943;

Kiauta, 1971;

Perepelov and Bugrov, 2002

9

Aeshna mixta Latreille, 1805

Netherlands

India

India

Russia

n = 14

n = 13

n = 13

n = 14

X0

X0

X0

X0

Present

Present

Present

Present

Kiauta, 1969b;

Sandhu and Malhotra, 1994; Sharma and Durani, 1995;

Perepelov and Bugrov, 2002

10

Aeshna nigroflava

Martin, 1908

Japan

Russia

n = 14

n = 14

X0

X0

Present

Absent

Katatani, 1987;

Perepelov and Bugrov, 2002

11

Aeshna palmata

Hagen, 1856

U. S. A.

n = 14

X0

Present

Cruden, 1968

12

Aeshna serrata

Hagen, 1856

Finland

n = 13

 

neo – XY

Present

 

Oksala, 1943 under the name Aeshna osiliensis fennica

Mierzejewski, 1913 and  Aeshna serrata fennica

Valle, 1938

13

Aeshna subarctica

Walker, 1908

U. S. A.

 

 

 

Switzerland

n = 14

 

 

 

n = 14

X0

 

 

 

X0

Present

 

 

 

Present

Oksala, 1943, 1952 under the name Aeshna subarctica elisabethae

Djakonov, 1922;

Kiauta and Kiauta, 1980

14

Aeshna umbrosa

Walker, 1908

U. S. A.

n = 14

X0

Absent

Cruden, 1968 under the name Aeshna umbrosa occidentalis

Walker, 1908 and Aeshna umbrosa umbrosa

Walker, 1908

15

Aeshna verticalis

Hagen, 1861

U. S. A.

n = 14

X0

Present

Hung, 1971

16

Aeshna viridis

Eversman, 1836

Finland

Russia

n = 13

n = 13

neo – XY

neo – XY

Present

Present

Oksala, 1943;

Perepelov et al., 1998

17

Aeshna walkeri

Kennedy, 1917

U. S. A.

n = 14

X0

Present

Cruden, 1968

18

Anaciaeschna jaspidea

(Burmeister, 1839)

India

n = 13

X0

Present

Walia and Sandhu, 1999

19

Anax amazili

(Burmeister, 1839)

Argentina

Argentina

n = 14

n = 14

X0

X0

Absent

Present

Capitulo et al., 1991;

Mola et al., 1999

20

Anax concolor

Brauer, 1865

Suriname

n = 14

X0

Present

Kiauta, 1979

21

Anax ephippiger (Burmeister, 1839)

India

 

 

n = 7

 

 

XY

 

 

Present

 

 

Seshachar and Bagga, 1962 under the name Hemianax ephippiger (Burmeister, 1839);

Present study

22

Anax guttatus (Burmeister, 1839)

Nepal

2n = 15, n = 8

X0

Present

Kiauta and Kiauta, 1982

23

Anax immaculifrons Rambur, 1842

India

India

India

n = 14

n = 14

n = 14

X0

X0

X0

Present

Present

Present

Sangal and Tyagi, 1982;

Walia et al.,  2018

Present study

24

Anax imperator

Leach, 1815

France

Kenya

Russia

n = 14

n = 14

n = 14

X0

X0

X0

Present

Absent

Present

Kiauta, 1965, 1969b;

Wasschner, 1985;

Perepelov and Bugrov, 2002

25

Anax indicus

Lieftinck, 1942

India

n = 14

2n = 27

X0

Present

Present Study

26

Anax junius

(Drury, 1773)

U. S. A.

U. S. A.

Japan

U. S. A.

n = 14

n = 14

n = 14

n = 14

X0

X0

X0

X0

Present

Present

Present

Present

McGill, 1904, 1907;

Lefevre and McGill, 1908;

Kichijo, 1942; Kiauta, 1972c;

Cruden, 1968

27

Anax longipes

Hagen, 1861

U. S. A.

n = 14

X0

Present

Cruden, 1968

28

Anax nigrofasciatus nigrolineatus Fraser, 1935

Nepal

India

India

India

India

n = 14

n = 13

n = 14

n = 14

n = 14

X0

X0

X0

X0

X0

Present

Present

Present

Present

Present

Kiauta, 1975;

Sandhu and Malhotra, 1994;

Walia and Sandhu, 1999;

Walia et al., 2018;

Present study

29

Anax papuensis

(Burmeister, 1839)

Australia

n = 14

X0

Present

Kiauta, 1968c, 1969b under the name Hemianax papuensis

(Burmeister, 1839)

30

Anax parthenope

(Selys, 1839)

Japan

 

 

India

China

Japan

India

India

n = 14

 

 

n = 14

n = 14

n = 14

n = 13

n = 13

X0

 

 

X0

X0

X0

X0

X0

Present

 

 

Present

Present

Present

Present

Present

Omura,1957 under the name Anax parthenope julius

Brauer, 1865;

Thomas and Prasad, 1986;

Zhu and Wu, 1986;

Suzuki and Saitoh, 1990;

Sandhu and Malhotra, 1994;

Present study

31

Andaeschna unicolor

(Martin, 1908)

Bolivia

n = 14

X0

Present

Cumming, 1964 under the name Aeschna cf. uncolor Martin, 1908

32

Austroaeschna anacantha (Tillyard, 1908)

Australia

n = 14

X0

Present

Kiauta, 1968c under the name Acanthaeschna anacantha (Tillyard, 1908)

33

Austroaeschna multipunctata (Martin, 1901)

Australia

n = 14

X0

Present

Kiauta, 1968c under the name Acanthaeschna

Multipunctata

 (Martin, 1901)

34

Basiaescha janata

(Say, 1839)

U. S. A.

n = 13

X0

Absent

Cruden,1968

35

Boyeria maclachlani

(Selys, 1883)

Japan

n = 14

X0

Present

Omura, 1957

36

Boyeria vinosa

(Say, 1839)

U. S. A.

n = 14

X0

Absent

Cruden, 1968

37

Caliaeschna microstigma (Schneider, 1845)

Greece

n = 8

neo – XY

Present

Kiauta, 1972b

38

Castoraeschna castor

(Brauer, 1865)

Brazil

n = 14

X0

Present

Kiauta, 1972a

39

Cephalaeshna orbifrons

Selys, 1883

Nepal

n = 13

X0

Present

Kiauta, 1975

40

Cephalaeshna sp.

India

n = 13

X0

Present

Sandhu and Malhotra, 1994

41

Coryphaeschna

adnexa

(Hagen, 1861)

Bolivia

n = 14

X0

Absent

 

Cumming, 1964

42

Coryphaeschna

perrensi

(McLachlan, 1887)

Argentina

Argentina

Argentina

n = 13

n = 14

n = 14

X0

X0

X0

Absent

Present

Present

Capitulo et al., 1991;

Mola et al., 1999;

De Gennaro et al., 2008

43

Coryphaeschna

viriditas

Calvert, 1952

Suriname

n = 12

X0

Absent

Kiauta, 1979

44

Gynacantha bayadera

Selys, 1891

India

n = 14

n = 13

 

X0

Present

Walia, 2007 under the name Gynacantha milliardi

Fraser, 1936

45

Gynacantha hyalina

Selys, 1882

India

n = 14

 

X0

Present

Tyagi, 1978a, b

46

Gynacatha interioris  Williamson, 1923

Suriname

Brazil

n = 13

n = 13

neo – XY

neo – XY

Present

Present

Kiauta, 1979;

Ferreira et al., 1979

47

Gynacantha japonica

Bartenev, 1909

Japan

n = 14

X0

Present

Omura, 1957

48

Gynacantha subinterrupta Rambur, 1842

India

India

n = 14

n = 14

X0

X0

Present

Present

Walia and Somal, 2019;

Present study

49

Gynacanthaeschna sikkima

(Karsch, 1891)

India

n = 13

X0

Present

Walia et al.,  2016

50

Oplonaeshna armata

(Hagen, 1861)

Mexico

n = 14

X0

Present

Kiauta, 1970

51

Planaeschna milnei

(Selys, 1883)

Japan

n = 14

X0

Present

Kiauta, 1968c, 1969b

52

Remartinia luteipennis (Burmeister, 1839)

Suriname

n = 13

X0

Present

Kiauta, 1979 under the name Coryphaeschna

luteipennis luteipennis

(Burmeister, 1839)

53

Rhionaeschna bonariensis

(Rambur, 1842)

Argentina

Argentina

2n = 26

n = 13

neo – XY

neo – XY

Absent

Present

Mola and Papeschi, 1994;

Mola, 1995 as Aeschna bonariensis

Rambur, 1842

54

Rhionaeshna californica

(Calvert, 1895)

Canada

n = 14

X0

Present

Kiauta, 1973 under the name Aeshna californica

(Calvert, 1895)

55

Rhionaeshna confusa

(Rambur, 1842)

Argentina

 

 

Argentina

n = 14

 

 

n = 14

X0

 

 

X0

Present

 

 

Present

Mola and Papeschi, 1994 under the name Aeshna confusa

Rambur, 1842

Mola, 1995

56

Rhionaeshna diffinis

(Rumbur, 1842)

Bolivia

n = 11

X0

Present

Cumming, 1964 under the name Aeshna diffinis diffinis

Rumbur, 1842

57

Rhionaeshna intricata

(Martin, 1908)

Bolivia

n = 10

X0

Present

Cumming, 1964 under the name Aeshna intricata

Martin, 1908

58

Rhionaeshna peralta

(Ris, 1918)

Bolivia

n = 14

X0

Present

Cumming, 1964 under the name Aeshna peralta

Ris, 1918

59

Rhioneschna planaltica  (Calvert, 1845)

Argentia

n = 8

neo – XY

Present

Mola and Papeschi, 1994 under the name Aeschna cornigera planaltica Calvert, 1952

60

Staurophlebia reticulata (Burmeister, 1839)

Brazil

n = 14

X0

Present

Souza Bueno, 1982 under the name

Staurophlebia reticulata reticulata (Burmeister, 1839)

 

Figure 3: Different chromosome numbers present in the species of family Aeshnidae

Click here to view figure

Kiauta (1967a – d) discussed the evolution of chromosome number in odonate species. He considered n = 9 as ancestral chromosome number and divided dragonflies’ chromosomes into two groups, one with high – n complements (n = 9 to 15) and second with low – n complements (n = 3 to 7). He explained that size of chromosomes of high – n species is smaller than the size of low – n species. He found the low – n complement in tropical species, while high – n complement in temperate region species based on geographical distribution. He also explained that in Odonata breaks lead to haploid numbers 10 to 15 and fusions lead to haploid numbers 3 to 8 from the ancestral chromosome number n = 9.

During the present study, all the species of family Aeshnidae show 2n = 27, (26A+X) which is the type number of the family as earlier reported (Table – 2). The only exception is Anax ephippiger with 2n = 14, (10A+2m+neo – XY) which originated by the 13 successful fusions between autosomes and autosome with sex chromosome. The complement of the species is stable because same complement in the species has been reported by Seshachar and Bagga (1962).

 Micro chromosomes and their size

Micro chromosomes (m) are considered as cytogenetic marker of the order Odonata. Absence or presence of m chromosomes depicts the taxonomic status of a species. McGill (1904) observed the presence of m chromosomes in chromosome complement of Anax junius for the first time in the family Aeshnidae. Later, Oguma (1930) proposed the “m chromosome theory” and considered m chromosome as an autosome which undergoes gradual diminution in volume until they disappear. Later, Dasgupta (1957) and Cumming (1964) supported the theory, but Kiauta (1968a) discarded the theory and considered m chromosomes as fragment of autosome which is present in 80% of the odonate species. He further explained that accidental breaks can occur at any time in the holocentric chromosomes which is responsible for the variation in the size of m chromosomes.

In the family Aeshnidae, out of 60 cytogenetically studied species, m chromosomes are present in 45 species, while they are absent in 15 species. Presently, all the 6 species of the family show the presence of m chromosomes in the complement (Table 2). Variation in the size of m chromosomes can serve as the identifying feature of odonate species and to differentiate closely related species of the same genus. Presently, variation in the size of m chromosomes has been recorded. Size of m bivalent is slightly smaller than X chromosome in Anax parthenope (Fig. 2a), minute in Anax immaculifrons (Fig. 1c), Anax indicus (Fig. 1e) Anax nigrofasciatus nigrolineatus (Fig. 1g), Gynacantha subinterrupta (Fig. 2c) and small in Anax ephippiger (Fig. 1a) (Table – 3).

Size and behaviour of sex chromosomes

In Odonata, majority of the species possess the XX(♀)/X0(♂) sex determining mechanism (Fig. 4). In the family Aeshnidae, Out of 60 species, 50 species possess XX(♀)/X0(♂) sex mechanism, while 10 species show neo – XY sex determining mechanism, originated by the fusion of sex chromosome with an autosome (Fig. 4). 16.6% species possess neo – XY sex determining mechanism which is very high in the family Aeshnidae as compared to other families of the order.

Figure 4: Sex determining mechanism in species of family Aeshnidae.

Click here to view figure

During the present study, Anax immaculifrons (Fig. 1c), Anax indicus (Fig. 1e), Anax nigrofasciatus nigrolineatus (Fig. 1g), Anax parthenope (Fig. 2a) and Gynacantha subinterrupta (Fig. 2c) show XX/X0 sex mechanism, while Anax ephippiger possesses neo – XY (Fig. 1a) as earlier reported (Seshachar and Bagga, 1962). They observed largest X chromosome and medium sized Y chromosome in the chromosome complement and explained that almost 13 centric fusions occurred in Hemianax ephippiger, which decreased the chromosome number from 27 to 14 and one fusion occurred between X chromosome and an autosome. Similar results have been found in the species. Schematic presentations for the evolution of chromosome number and sex determining mechanism in Anax ephippiger (Burmeister, 1839): 2n = 14, (10A+2m+neo – XY) is established (Fig. 5).

Figure 5: Schematic presentations for the evolution of chromosome number and sex determining mechanism in Anax ephippiger

Click here to view figure

Size of the X chromosome is peculiar feature of the species and is variable in different species. Majority of the researcher are silent as to the size of X chromosome, but few reports have recorded the size of X chromosome as smallest element in Anax amazili (Mola et al., 1999) and in Aeshna nigroflava (Pereplov and Bugrov, 2002), while as second largest element  in Aeshna crenata (Pereplov and Bugrov, 2002). Presently, X chromosome is 2nd smallest in the complement of Anax nigrofasciatus nigrolineatus, Gynacantha subinterrupta, while it is medium sized in Anax immaculifrons, Anax parthenope and large sized in Anax indicus and neo – XY of Anax ephippiger (Table 3).

Table 3: Morphological characterization of chromosome complements in the species of families Aeshnidae.

S. No.

Name of species

Conventional staining

Chromosomal complement

Size of X chromosome

Size of

m chromosomes

Variation in complement

1

Anax ephippiger (Burmeister, 1839)

2n (♂) = 14 (10A+2m+ neo – XY)

X is largest

Y is medium sized

Small sized

2n = 14 with neo – XY complement originated by the 13 simultaneous fusions between autosomes and sex chromosome with an autosome.

2

Anax immaculifrons Rambur, 1842

2n (♂) = 27 (24A+2m+X)

Medium sized

Minute sized

 

3

Anax indicus

Lieftinck, 1942

2n (♂) = 27 (24A+2m+X)

Largest

Minute sized

 

 

4

Anax nigrofasciatus nigrolineatus

Fraser, 1935

2n (♂) = 27 (24A+2m+X)

2nd smallest

Minute sized

 

 

5

Anax parthenope (Seyls, 1839)

2n (♂) = 27 (24A+2m+X)

Medium sized

Slightly smaller than X chromosome

 

6

Gynacantha subinterrupta

Rambur, 1842

2n (♂) = 27 (24A+2m+X)

2nd Smallest

Minute sized

 

C banding

In the family Aeshnidae, C – banding has been reported on 11 species (Thomas and Prasad, 1986; Perepelov et al., 1998; Perepelov and Bugrov, 2002; Nokkala et al., 2002; Walia et al., 2016, 2018; Walia and Somal, 2019). They found terminal C – bands on autosomal bivalents and X chromosome is mostly C – positive. Presently, C – banding on 6 species of family Aeshnidae have been under taken. C – bands are mostly present at the terminal regions, while amount of C – heterochromatin varies in the species. Moreover, distribution of C – heterochromatin in m bivalent and X chromosome shows variations. The m bivalent is C – negative in Anax immaculifrons, Anax indicus and Gynacantha subinterrupta, while possesses less amount of C – heterochromatin in Anax ephippiger, Anax nigrofasciatus nigrolineatus and Anax parthenope. On the other hand, X chromosome is C – positive in Anax immaculifrons, Anax nigrofasciatus nigrolineatus, Anax indicus and Gynacantha subinterrupta, while shows terminal C – bands in Anax parthenope.  Anax ephippiger and Anax parthenope possess different C – banding pattern as C – bands are present on the sub-terminal and interstitial regions of autosomal bivalents, while cross shaped neo – XY bivalent in Anax ephippiger shows interspersed C – bands (Table 4).

Table 4: Distribution of C – heterochromatin in the species of family Aeshnidae.

S. No.

Name of species

Distribution of C heterochromatin

Autosomes

 

m chromosome

Sex chromosomes

1

Anax ephippiger (Burmeister, 1839)

Dark terminal, subterminal and interstitial C – bands on 5 bivalents.

less amount of  C – heterochromatin

Cross shaped neo – XY bivalent with interspersed  C – bands

2

Anax immaculifrons Rambur, 1842

Dark terminal C – bands on 9 bivalents.

Light terminal C – bands on 3 bivalents.

C – negative

C – positive

3

Anax indicus

Lieftinck, 1942

Dark terminal C – bands on 8 bivalents.

Light terminal C – bands on 4 bivalents.

C – negative

C – positive

4

Anax nigrofasciatus nigrolineatus

Fraser, 1935

Dark terminal C – bands on 9 autosomal bivalents.

Light terminal C – bands on 3 bivalents.

less amount of  C – heterochromatin

C – positive

5

Anax parthenope (Seyls, 1839)

Dark terminal C – bands on 7 bivalents.

Light terminal C – bands on 5 bivalents.

less amount of  C – heterochromatin

Tserminal C – bands

6

Gynacantha subinterrupta

Rambur, 1842

Dark terminal C – bands on 6 bivalents.

Light terminal C – bands on 6 bivalents.

C – negative

C – positive

Presence of C-heterochromatin on the terminal regions is due to the localization of centromeric activity at the terminal regions of the bivalents which is necessary for the segregation of chromosomes during division and is peculiar feature of holocentric chromosomes present in Odonata and in other insect groups. Cytogenetic analysis on Anax indicus (Lieftinck, 1942) has been attempted for the first time and C – banding of Anax ephippiger (Burmeister, 1839) and Anax indicus (Lieftinck, 1942) has been studied for the first time. List of cytologically studied species of family Aeshnidae has been updated to 60 species. 

Conclusion

Chromosome complement and C – banding of six species of family Aeshnidae have been done and list of cytologically studied species of family has been updated to 60 species. All species have 2n = 27m with X0 – XX sex determination except Anax ephippiger with 2n = 14 + neo XY resulted by the 13 simultaneous fusions between the autosomes and  autosome with sex chromosome. C-heterochromatin distribution has been compared among the species. C – bands are primarily seen at the terminal regions of autosomal bivalents, while Anax ephippiger and Anax parthenope also have C – bands in the interstitial and sub-terminal sections of the bivalents. Additionally, the distribution of C-heterochromatin for sex chromosome and m bivalent varies in the species.

Acknowledgements

We thankful to the Department of Zoology and Environmental Sciences, Punjabi University, Patiala for providing all the lab facilities, to UGC, New Delhi for financial support.

Conflict of Interest

There are no conflict of interest.

Funding Sources

There is no funding source.

References

  1. Capitulo, R. A., Mola L. M. and Agopian, S. S.  (1991) Species catalogue and chromosomal data of Odonata from Argentina. Revista de la Sociedad Entomológica Argentina 49(1 – 4): 59 – 72.
  2. Carr, D. H. and Walker, J. E. (1961) Carbol – fuchsin as a stain for human chromosomes. Stain Technology 30: 233 – 236.
  3. Cruden, R. W. (1968) Chromosome numbers of some North American dragonflies (Odonata). Canadian Journal of Genetics and Cytology 10: 200-214.
  4. Cumming, R. B. (1964) Cytogenetic studies in the order Odonata. Ph. D. thesis. University of Texas, Austin.
  5. Dasgupta, J. (1957) Cytological studies of some Indian dragonflies. II: A study of the chromosomes during meiosis in thirty species of Indian Odonata (Insecta). Proceedings of Zoological Society Calcutta, 10: 1 – 65.
  6. De Gennaro, D., Rebagliati, P. J. and Mola, L. M. (2008) Fluorescent banding and meiotic be­haviour in Erythrodiplax nigricans (Libelluli­dae) and Coryphaeschna perrensi (Aeschni­dae) (Anisoptera, Odonata). Caryologia 61: 60 – 67.
  7. Ferreira, A., Kiauta B. and Zaha, A. (1979) Male germ cell chromosomes of thirty-two Brazilian dragonflies. Odonatologica 8: 5 – 22.
  8. Fuchsówna, J. and Sawczyńska, J. (1928) Za­chowanie sie heterochromosomóv podcza smspermatogenezy u wažek (Odonata). Cz. I. Aeschna grandis L. Libellula quadri­maculata L. Archiwum Towarzystwa na­ukowego we Lwowie (III) 4 (9): 177 – 197 [in Polish].
  9. Hung, A. C. F. (1971) Cytological studies of five dragonflies (Odonata: Anisoptera). Entomological News 82: 103-106.
  10. Katatani, N. (1987) On the chromosomes of dragonflies, 1. Synopsis on the studies in some Japanese dragonflies. Aeschna 20: 21-31.
  11. Kiauta, B. (1965) The chromosome behav­iour in spermatogenetic meiosis of Anax imperator Leach (Odonata: Aeshnidae). Tombo, Tokyo 7: 18-21.
  12. Kiauta, B. (1967a). Considerations on the evolution of the chromosome complement in Odonata. Genetica 38: 430 – 446.
  13. Kiauta, B. (1967b) A new hypothesis on the karyotypic evolution in Odonata. Tombo 10: 29 – 33.
  14. Kiauta, B. (1967c) A new hypothesis on the evolution of the chromosome complement in Odonata. Tombo 10(1 – 4): 29 – 33.
  15. Kiauta, B. (1967d) Considerations on the evolution of the chromosome complement in Odonata. Genetica 38(4): 430 – 446.
  16. Kiauta, B. (1968a) Evolution of the chromosome complement in Odonata. Entomologische Berichten 28(5): 97 – 100.
  17. Kiauta, B. (1968b) Morphology and kinetic behaviour of the odonate sex chromosomes, with a review of the distribution of sex determining mechanisms in the order. Genenen Phaenen 12: 21 – 24.
  18. Kiauta, B. (1968c) The chromosome num­bers of eight Old World dragonflies (Odonata). Chromosome Information Service 9: 3 – 4.
  19. Kiauta, B. (1969b) Autosomal fragmentations and fusions in Odonata and their evolution­ary implications. Genetica 40: 158-180.
  20. Kiauta, B. (1970) The chromosomes of four Neotropical dragonflies from Mexico. Chro­mosome Information Service 11: 8-9.
  21. Kiauta, B. (1971) Studies on the germ cell chromosome cytology of some cytotaxo­nomically interesting or hitherto not stud­ied Odonata from the autonomous region Friuli-Venezia Giulia (northern Italy). Atti del Museo civico di Storia naturale di Trieste 27: 65-127.
  22. Kiauta, B. (1972a) Notes on new or little known dragonfly karyotypes, 1. The germ cell chromosomes of three Latin American species: Argia funebris (Hagen), Megapodagrion contortum (Selys) (Zygoptera: Coenagrionidae, Megapodagrionidae) and Castor aeschna castor (Brauer) (Anisop­tera: Aeshnidae). Genenen Phaenen 15: 23 – 26.
  23. Kiauta, B. (1972b) Notes on new or little known dragonfly karyotypes, 2. Male germ cell chromosomes of four East Mediterra­nean species: Lestes barbarus (Fabricius), Calopteryx splendensamasina Bartenev (Zygoptera: Lestidae, Calopterygidae), Caliaeschna microstigma (Schneider) and Orthetrum taeniolatum (Schneider) (Anisoptera: Aeshnidae, Libellulidae). Genenen Phaenen 15: 95 – 98.
  24. Kiauta, B. (1972c) Synopsis of the main cyto­taxonomic data in the order Odonata. Odo­natologica 1: 73 – 102.
  25. Kiauta, B. (1973) Notes on new or little known dragonfly karyotypes, 3. Spermato­cyte chromosomes of four Nearctic anisopterans: Aeshna californica Calvert (Aeshni­dae), Cordulia shurtleffi Scudder (Cordulii­dae), Sympetrum internum Montgomery, and S. madidum (Hagen) (Libellulidae). Genen en Phaenen 16: 7 – 12.
  26. Kiauta, B. (1975) Cytotaxonomy of dragon­flies, with special reference to the Nepalese fauna. Lectures delivered at the Tribhuvan University, Kathmandu, Vol. 2. Nepal Re­search Center, Kathmandu.
  27. Kiauta, B. (1978) Two cytotaxonomically interesting cases of irreversible autosome fusion in dragonflies Agria modesta (Hagen) (Zygoptera: Coenagrionidae) and Anaciaeschna isosceles (Müller) (Anizoptera: Aeshnidae). Notulae Odonatologicae 1(1): 7 – 9.
  28. Kiauta, B. (1979) The karyotypes of some Anisoptera from Surinam. Odonatologica 2: 267 – 283.
  29. Kiauta, B. and Kiauta, M. A. J. E. (1980) The karyotypes of Aeshna subarctica elisa­bethae Djak. and Somatochlora alpestris (Sel.) from Switzerland (Anisoptera, Aeshni­dae, Corduliidae). Notulae odonatologicae 1(6): 104 – 105.
  30. Kiauta, B. and Kiauta, M. (1982) The chromosome numbers of sixteen dragonfly species from the Arun Valley, eastern Nepal. Notulae odonatologicae 9: 143 – 146.
  31. Kichijo, H. (1942) Konchu no Senshokutai. IV. Tombo-Moku 2 [Insect chromosomes. IV. Order dragonflies, Pt. 2]. Nagasaki Igakukai Zasshi 20: 1639 – 1648 [in Japa­nese].
  32. Lefevre, G. and McGill, C. (1908) The chromosomes of Anax tristis and Anax junius. American Journal of Anatomy 7: 469 – 487.
  33. Makalowskaja, W. N. (1940) Comparative karyological studies of dragon-flies (Odonata). Archives russes d’Anatomie, d’Histologie et d’Embryologie 25: 24 – 39.
  34. McGill, C. (1904) The spermatogenesis of Anax junius. University of Missouri Studies 2: 236 – 250.
  35. McGill, C. (1907) The behavior of the nucleoli during oogenesis of the dragonfly with special reference to synapsis. Zoologische Jahrbücher. Abteilungfür Anatomie und Ontogenie der Tiere 23: 207 – 230.
  36. Mola, L. M. (1995) Post reductional division in Aeshna (Aeshnidae, Odonata). Hereditas 122: 47 – 55.
  37. Mola, L. M. and Papeschi, A. G. (1994) Karyotype evolution in Aeshna (Aeshnidae: Odonata). Hereditas 121: 185 – 189.
  38. Mola, L. M., Papeschi, A. G.and Carrilo, E. T. (1999) Cytogenetics of seven species of dragonflies. Hereditas 131: 147 – 153.
  39. Nokkala, S., A. Laukkanen and Nokkala, Laukkanen, C. (2002) Mitotic and meiotic chromosomes in Somatochlora metallica (Cordulidae [sic], Odonata). The absence of localized centro­meres and inverted meiosis. Hereditas 136: 7 – 12.
  40. Oguma, K. (1930) A comparative study of the spermatocyte chromosome in allied species of the dragonfly. Journal of Faculty of Sciences, Hokkaido University 6: 1 – 32.
  41. Oksala, T. (1939) Über Tetraploidie der Bin­de- und Fettgewebe bei den Odonaten. He­reditas 25: 132 – 144.
  42. Oksala, T. (1943) Zytologische Studien an Odonaten I. Chromosomenverhältnisse bei der Gattung Aeschna mit besonderer Berücksichtigung der postreduktionellen Teilung der Bivalente. Annales Academiae Scientiarum fennicae (A. 4, Biologica) 4: 1 – 64.
  43. Oksala, T. (1944) Zytologische Studien an Odonaten II. Die Entstehung der meiotischen Präkozität.  Annales Academiae Scientiarum fennicae (A. 4, Biologica) 5: 1-33.
  44. Oksala, T. (1945) Zytologische Studien an Odonaten. III. Die Ovogenese. Annales Aca­demiae Scientiarum fennicae (A IV, Biologi­ca) 9: 1 – 132.
  45. Oksala, T. (1952) Chiasma formation and chiasma interference in Odonata. Hereditas 38: 449 – 480.
  46. Omura, T. (1957) A comparative study of the spermatogenesis in the Japanese dragonfly II: Family Aeschnidae, Gomphidae and Calopterygidae. Biological Journal 3: 1 – 86.
  47. Perepelov, E. and Bugrov, A. G. (2002) Consti­tutive heterochromatin in chromosomes of some Aeshnidae, with notes on the forma­tion of the neo-XY/neo-XX mode of sex de­termination in Aeshna (Anisoptera). Odo­natologica 31: 77 – 83.
  48. Perepelov, E. and Bugrov, A. G. and Sliwa, W. E. (1998) C – banding karyotypes of some dragonfly species from Russia. Folia Biologica 46: 3 – 4.
  49. Sandhu, R. and Malhotra, I. (1994) Karyological studies of four aeshnid dragonflies from the states of Jammu and Kashmir and Himachal Pradesh (India). In: Srivastava V.K. (Ed.), Advances in Oriental Odonatology: Proceedings of IV South Asian Symposium of Odonatology, Allahabad, India (10-12 October 1992) 111 – 115. Cherry Publications, Allahabad.
  50. Sangal, S. K. and Tyagi, B. K. (1982) The spermatocyte chromosomes of Anax immaculifrons Rambur from India (Anisoptera, Aeshnidae). Notulae odonatologicae 1: 154 – 155.
  51.  Seshachar, B. R. and Bagga, S. (1962) Chromosome number and sex-determining mechanism in dragonfly Hemianax ephippiger (Burmeister). Cytologia 27. 443 – 449.
  52. Sharma, O. P. and Durani, S. (1995) A study on the chromosomes of three species of dragonflies (Odonata: Anisoptera). National Academy Science Letters 18: 5 – 6.
  53. Souza Bueno, A. M. (1982) Chromosomal studies in order Odonata. M. Sc. Thesis, Universidad Estatal Paulista, pp. 140.
  54. Subramanian, K. A. and Babu, R. (2017) A checklist of Odonata (Insecta) of India. Zoological Survey of India, Kolkata.
  55. Sumner, A. T. (1972) A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research 75: 304 – 306.
  56. Suzuki, K. J. and Saitoh, K. (1990) A revised chromosome study of Japanese Odonates (I). Chromosomes of 14 species belonging to nine families. The Science Reports of the Hirosaki University 37: 38 – 49.
  57. Thomas, K. I. and Prasad, R. (1986) A study of the germinal chromosomes and C-band patterns in four Indian dragonflies (Odonata). Perspectives in Cytology and Genetics 5: 125 – 131.
  58. Tyagi, B. K. (1978a.) The chromosome numbers and sex-determining mechanisms newly recorded in thirteen Indian dragonflies (Odonata). Chromosome Information Service 25: 5-7.
  59. Tyagi, B. K. (1978b) Studies on the chromosomes of Odonata of Dun Valley (Dehradun, India). Ph.D. thesis, University of Garhwal, Srinagar.
  60. Tyagi, B. K. (1982) Cytotaxonomy of Indian dragonflies. B 2: 149 -161.
  61. Tyagi, B. K. (1986) Cytogenetics, Karyosystematics and Cytophylogeny of Indian Odonata. Indian Review of Life Sciences 6: 221 – 239.
  62. Walia, G. K. (2007) Cytomorphological studies on Gynacantha milliardi Fraser of the family Aeschnidae (Anisoptera: Odonata). Cytologia 72, 57 – 62.
  63. Walia, G. K. and Sandhu, R. (1999) Karyotypic study of two species of family Aeschnidae (Anisoptera: Odonata). Chromosome Science 3: 45 – 47.
  64. Walia, G. K. and Somal, D. S. (2019) Cytogenetic report on Gynacantha subinterrupta Rambur, 1842 of family Aeshnidae (Odonata: Anisoptera) from Himachal Pradesh, India. Journal of Advanced Zoology 40(2): 128 – 135.
  65. Walia, G. K., Chahal, S. S. and Babu, R. (2016) Cytogenetic report on Gynacanthaeschna sikkima from India (Odonata: Aeshnidae). Odonatologica 45: 87 – 94.
  66. Walia, G. K., Chahal, S. S. and Somal, D. S. (2018) Chromosome observation based on C – banding,    Ag-NOR and sequence specific staining in two Anax species from India (Odonata: Aeshnidae). Odonatologica 47 (1/2): 145 – 160.
  67. Wasscher, M. 1985. The karyotypes of some dragonflies from Kenya and Sudan. Notulae odonatologicae 2 (6): 105 – 106.
  68. Zhu, H. and Wu, J. (1986) Notes on the male germ cell karyotypes of some Odonata from the Shanxi Province, China. Notulae Odonatologicae 2: 118 – 120.
(Visited 227 times, 1 visits today)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.